Suche: Gemeinde Baindt

Seitenbereiche

Diese Website benötigt einen Cookie zur Darstellung externer Inhalte

Um unsere Website für Sie optimal gestalten und fortlaufend verbessern zu können, verwenden wir einwilligungspflichtige externe Dienste und geben dadurch Ihre personenbezogenen Daten an Dritte weiter. Über den Button „Mehr“ können Sie einzeln auswählen, welche Dienste Sie zulassen möchten. Sie können Ihre Zustimmung und Einwilligung jederzeit widerrufen.

Cookie-Banner
Funktionell
 

Diese Technologien ermöglichen es uns, die Nutzung der Website zu analysieren, um die Leistung zu messen und zu verbessern.

 
YouTube

Dies ist ein Dienst zum Anzeigen von Videoinhalten.

Verarbeitungsunternehmen

Google Ireland Limited
Google Building Gordon House, 4 Barrow St, Dublin, D04 E5W5, Ireland

Datenverarbeitungszwecke
 

Diese Liste stellt die Zwecke der Datenerhebung und -verarbeitung dar. Eine Einwilligung gilt nur für die angegebenen Zwecke. Die gesammelten Daten können nicht für einen anderen als den unten aufgeführten Zweck verwendet oder gespeichert werden.

 
  • Videos anzeigen
Einwilligungshinweis
 

Bitte beachten Sie, dass bei Ihrer Einwilligung zu einem Dienst auch das Laden von externen Daten sowie die Weitergabe personenbezogener Daten an diesen Dienst erlaubt wird.

 
Genutzte Technologien
  • Cookies (falls "Privacy-Enhanced Mode" nicht aktiviert ist)
Erhobene Daten
 

Diese Liste enthält alle (persönlichen) Daten, die von oder durch die Nutzung dieses Dienstes gesammelt werden.

 
  • IP-Adresse
  • Referrer-URL
  • Geräte-Informationen
  • Gesehene Videos
Rechtsgrundlage
 

Im Folgenden wird die nach Art. 6 I 1 DSGVO geforderte Rechtsgrundlage für die Verarbeitung von personenbezogenen Daten genannt.

 
  • Art. 6 Abs. 1 s. 1 lit. a DSGVO
Ort der Verarbeitung

Europäische Union

Aufbewahrungsdauer
 

Die Aufbewahrungsfrist ist die Zeitspanne, in der die gesammelten Daten für die Verarbeitung gespeichert werden. Die Daten müssen gelöscht werden, sobald sie für die angegebenen Verarbeitungszwecke nicht mehr benötigt werden.

 

Die Daten werden gelöscht, sobald sie nicht mehr für die Verarbeitungszwecke benötigt werden.

Datenempfänger
   
  • Alphabet Inc.
  • Google LLC
  • Google Ireland Limited
Datenschutzbeauftragter der verarbeitenden Firma
 

Nachfolgend finden Sie die E-Mail-Adresse des Datenschutzbeauftragten des verarbeitenden Unternehmens.

 

https://support.google.com/policies/contact/general_privacy_form

Weitergabe an Drittländer
 

Einige Services leiten die erfassten Daten an ein anderes Land weiter. Nachfolgend finden Sie eine Liste der Länder, in die die Daten übertragen werden. Dies kann für verschiedene Zwecke der Fall sein, z. B. zum Speichern oder Verarbeiten.

 

Weltweit

Klicken Sie hier, um die Datenschutzbestimmungen des Datenverarbeiters zu lesen
Klicken Sie hier, um auf allen Domains des verarbeitenden Unternehmens zu widersprechen
Klicken Sie hier, um die Cookie-Richtlinie des Datenverarbeiters zu lesen
Vimeo

Dies ist ein Dienst zum Anzeigen von Videoinhalten.

Verarbeitungsunternehmen

Vimeo LLC
555 West 18th Street, New York, New York 10011, United States of America

Datenverarbeitungszwecke
 

Diese Liste stellt die Zwecke der Datenerhebung und -verarbeitung dar. Eine Einwilligung gilt nur für die angegebenen Zwecke. Die gesammelten Daten können nicht für einen anderen als den unten aufgeführten Zweck verwendet oder gespeichert werden.

 
  • Videos anzeigen
Einwilligungshinweis
 

Bitte beachten Sie, dass bei Ihrer Einwilligung zu einem Dienst auch das Laden von externen Daten sowie die Weitergabe personenbezogener Daten an diesen Dienst erlaubt wird.

 
Genutzte Technologien
  • Cookies akzeptieren
Erhobene Daten
 

Diese Liste enthält alle (persönlichen) Daten, die von oder durch die Nutzung dieses Dienstes gesammelt werden.

 
  • IP-Adresse
  • Geräte-Informationen
  • Browser-Informationen
  • Browser-Typ
  • Browser-Sprache
  • Cookie-Informationen
  • Betriebssytem
  • Referrer-URL
  • Besuchte Seiten
  • Suchanfragen
  • Informationen aus Drittanbieterquellen
  • Informationen, die Benutzer auf dieser Website bereitstellen
Rechtsgrundlage
 

Im Folgenden wird die nach Art. 6 I 1 DSGVO geforderte Rechtsgrundlage für die Verarbeitung von personenbezogenen Daten genannt.

 
  • Art. 6 Abs. 1 s. 1 lit. a DSGVO
Ort der Verarbeitung

Vereinigte Staaten von Amerika

Aufbewahrungsdauer
 

Die Aufbewahrungsfrist ist die Zeitspanne, in der die gesammelten Daten für die Verarbeitung gespeichert werden. Die Daten müssen gelöscht werden, sobald sie für die angegebenen Verarbeitungszwecke nicht mehr benötigt werden.

 

Die Daten werden gelöscht, sobald sie nicht mehr für die Verarbeitungszwecke benötigt werden.

Datenempfänger
   
  • Vimeo LLC
  • Google Analytics
  • Verbundene Unternehmen
  • Geschäftspartner
  • Werbepartner
Datenschutzbeauftragter der verarbeitenden Firma
 

Nachfolgend finden Sie die E-Mail-Adresse des Datenschutzbeauftragten des verarbeitenden Unternehmens.

 

Privacy@vimeo.com

Weitergabe an Drittländer
 

Einige Services leiten die erfassten Daten an ein anderes Land weiter. Nachfolgend finden Sie eine Liste der Länder, in die die Daten übertragen werden. Dies kann für verschiedene Zwecke der Fall sein, z. B. zum Speichern oder Verarbeiten.

 

Vereinigte Staaten von Amerika

Klicken Sie hier, um die Datenschutzbestimmungen des Datenverarbeiters zu lesen
Klicken Sie hier, um die Cookie-Richtlinie des Datenverarbeiters zu lesen
Google Maps

Dies ist ein Web-Karten-Dienst.

Verarbeitungsunternehmen

Google Ireland Limited
Google Building Gordon House, 4 Barrow St, Dublin, D04 E5W5, Ireland

Datenverarbeitungszwecke
 

Diese Liste stellt die Zwecke der Datenerhebung und -verarbeitung dar. Eine Einwilligung gilt nur für die angegebenen Zwecke. Die gesammelten Daten können nicht für einen anderen als den unten aufgeführten Zweck verwendet oder gespeichert werden.

 
  • Karten anzeigen
Einwilligungshinweis
 

Bitte beachten Sie, dass bei Ihrer Einwilligung zu einem Dienst auch das Laden von externen Daten sowie die Weitergabe personenbezogener Daten an diesen Dienst erlaubt wird.

 
Genutzte Technologien
  • Cookies akzeptieren
Erhobene Daten
 

Diese Liste enthält alle (persönlichen) Daten, die von oder durch die Nutzung dieses Dienstes gesammelt werden.

 
  • IP-Adresse
  • Standort-Informationen
  • Nutzungsdaten
  • Datum und Uhrzeit des Besuchs
  • URLs
Rechtsgrundlage
 

Im Folgenden wird die nach Art. 6 I 1 DSGVO geforderte Rechtsgrundlage für die Verarbeitung von personenbezogenen Daten genannt.

 
  • Art. 6 Abs. 1 s. 1 lit. a DSGVO
Ort der Verarbeitung

Europäische Union

Aufbewahrungsdauer
 

Die Aufbewahrungsfrist ist die Zeitspanne, in der die gesammelten Daten für die Verarbeitung gespeichert werden. Die Daten müssen gelöscht werden, sobald sie für die angegebenen Verarbeitungszwecke nicht mehr benötigt werden.

 

Die Daten werden gelöscht, sobald sie nicht mehr für die Verarbeitungszwecke benötigt werden.

Datenempfänger
   
  • Alphabet Inc.
  • Google LLC
  • Google Ireland Limited
Datenschutzbeauftragter der verarbeitenden Firma
 

Nachfolgend finden Sie die E-Mail-Adresse des Datenschutzbeauftragten des verarbeitenden Unternehmens.

 

https://support.google.com/policies/troubleshooter/7575787?hl=en

Weitergabe an Drittländer
 

Einige Services leiten die erfassten Daten an ein anderes Land weiter. Nachfolgend finden Sie eine Liste der Länder, in die die Daten übertragen werden. Dies kann für verschiedene Zwecke der Fall sein, z. B. zum Speichern oder Verarbeiten.

 

Weltweit

Klicken Sie hier, um die Datenschutzbestimmungen des Datenverarbeiters zu lesen
Klicken Sie hier, um auf allen Domains des verarbeitenden Unternehmens zu widersprechen
Klicken Sie hier, um die Cookie-Richtlinie des Datenverarbeiters zu lesen
Essentiell
 

Diese Technologien sind erforderlich, um die Kernfunktionalität der Webseite zu aktivieren.

 
Online-Formulare

Ermöglicht die Bedienung von Online-Formularen.

Verarbeitungsunternehmen
Gemeinde Baindt
Genutzte Technologien
  • Cookies akzeptieren
Erhobene Daten
 

Diese Liste enthält alle (persönlichen) Daten, die von oder durch die Nutzung dieses Dienstes gesammelt werden.

 
  • IP-Adresse
  • Browser-Informationen
Rechtsgrundlage
 

Im Folgenden wird die nach Art. 6 I 1 DSGVO geforderte Rechtsgrundlage für die Verarbeitung von personenbezogenen Daten genannt.

 
  • Art. 6 Abs. 1 s. 1 lit. a DSGVO
Ort der Verarbeitung

Europäische Union

Aufbewahrungsdauer
 

Die Aufbewahrungsfrist ist die Zeitspanne, in der die gesammelten Daten für die Verarbeitung gespeichert werden. Die Daten müssen gelöscht werden, sobald sie für die angegebenen Verarbeitungszwecke nicht mehr benötigt werden.

 

Die Daten werden gelöscht, sobald sie nicht mehr für die Verarbeitungszwecke benötigt werden.

Klicken Sie hier, um die Datenschutzbestimmungen des Datenverarbeiters zu lesen
Schnell gefunden
AmtsblattNotdiensteMitarbeiterRathaus online
Schnell gefunden
schneebedecktes Rathaus
verschneite Bäume mit Bach
Funkenfeuer über Baindt
Funkenfeuer Kiesgrube Baindt
Märzenbecher im Schenkenwald

Hauptbereich

Suche auf der Webseite

Die Ergebnisliste stellt Ihren Suchbegriff dar und sortiert die Suchergebnisse nach Häufigkeit. Rechts von der Ergebnisliste können bei "Sortieren nach" weitere Auswahlfelder angeklickt werden, um die Suchergebnisse zu verfeinern.

Gesucht nach "*".
Es wurden 878 Ergebnisse in 7 Millisekunden gefunden.
Zeige Ergebnisse 361 bis 370 von 878.
Klimaspartipp_des_Monats_Juli_-_Heizung.pdf

(Klima-) Spartipp des Monats Juli: Jedes Grad (weniger) zählt Sie wundern sich sicher, weshalb mitten im Hochsommer Tipps zum Heizen im Herbst und Winter erscheinen. Dies ist allerdings der momentanen Situation auf dem Energiemarkt mit der Ausrufung der Alarmstufe des Notfallplans Gas geschuldet. Vor allem im Hinblick darauf, dass etwa die Hälfte aller Privathaushalte in Deutschland mit Erdgas heizt, sind Energiesparmaßnahmen im Heizungsbereich nochmals wichtiger, als sie dies in der Vergangenheit sowieso schon waren. Neben der Sicherstellung der Wärmeversorgung im kommenden Winter, ist Energie sparen auch bezüglich der alles andere als rosigen Aussichten zu erwartender weiterer extremer Preissteigerungen für Erdgas, das Gebot der Stunde. Vermutlich werden auch Heizöl und selbst Erneuerbare Energieträger wie Holzpellets in absehbarer Zeit preislich weiter ansteigen und sind dies in den vergangenen Monaten und Jahren ja auch schon in erheblichem Maße. Es gibt allerdings einige Möglichkeiten ganz unabhängig vom verwendeten Energieträger die Preissteigerung der Heizkosten zumindest etwas abzumildern. Ganz nebenbei kann so auch Energie eingespart werden, was nicht unerheblich im Klimaschutz ist. Die richtige Einstellung der Heizung sollte bereits in absehbarer Zeit erfolgen und nicht erst dann, wenn sich das Außenthermometer bereits der Nullgradgrenze annähert. Denn allein über die richtige Einstellung der Heizung lassen sich bis zu 15 Prozent Heizkosten sparen. Deshalb ist es wichtig, dass Hausbesitzer und Vermieter bereits vor dem Beginn der kommenden Heizperiode ihre Heizung richtig einstellen lassen. Schon einfache Maßnahmen können die Heizkosten spürbar senken. Neben dem regelmäßigen Entlüften der Heizkörper, lohnt sich dabei vor allem ein hydraulischer Abgleich sowie die Optimierung der Heizkennlinie. Besonders einfach funktioniert dies zum Beispiel im Rahmen der jährlichen Heizungswartung. Befindet sich Luft in den Heizflächen, kann das Heizungswasser nicht mehr richtig zirkulieren und die Wärme des Kessels kommt nicht im Raum an, weshalb der Energieverbrauch hier unnötig hoch ist. Eine regelmäßige Entlüftung der Heizkörper verhindert dies und kann mit geringem Aufwand selbst durchgeführt werden. Dazu stellen Sie die Heizungspumpe ab und drehen die Thermostate aller Heizkörper voll auf. Anschließend öffnen Sie die Entlüftungsventile so lange, bis keine Luft mehr austritt. Ein Eimer oder eine Schüssel verhindert dabei, dass austretendes Wasser auf den Boden tropft. Sind die Arbeiten abgeschlossen, können Sie die Pumpe wieder starten und alle Thermostate auf den passenden Wert einstellen. Im Herbst und Winter gibt es zudem zahlreiche weitere Optionen, mit denen sich mit verhältnismäßig geringem Aufwand Heizenergie und damit Heizkosten einsparen lassen. Denn weniger Heizen schont den Geldbeutel und ist gut für das Klima! Die optimale Raumtemperatur im Wohn- und Arbeitsbereich liegt laut Umweltbundesamt bei nicht mehr als 20 Grad Celsius. Für Räume wie Küchen (18 °C) und Schlafzimmer (17 °C) sind die empfohlenen Temperaturen nochmals etwas niedriger. Entscheidend ist aber die individuelle Behaglichkeitstemperatur, welche hauptsächlich von der raumseitigen Oberflächentemperatur der Wände und Fenster abhängig ist. Wenn Sie nachts oder tagsüber einige Stunden lang nicht da sind, kann die Raumtemperatur im Wohnbereich von 20 Grad Celsius auf etwa 18 Grad Celsius abgesenkt werden. Bei einer Abwesenheit von mehreren Tagen, kann die Temperatur sogar nochmals niedriger eingestellt werden. Außerdem ist während der Nachtstunden eine Absenkung der Raumtemperatur in Wohn- und Arbeitsräumen um fünf Grad Celsius möglich. Bei modernen Heizungsanlagen lässt sich eine solche Absenkung der Raumtemperatur zentral steuern. Mittels eines Thermometers in den einzelnen Räumen ist es zudem ganz einfach zu überprüfen, ob die realen Temperaturen auch den gewünschten Raumtemperaturen entsprechen. Bereits mit einer Absenkung der Raumtemperatur von nur einem Grad Celsius, lassen sich um die 6 Prozent an Energie einsparen. Je mehr die Zimmertemperatur abgesenkt wird, umso mehr Energie kann eingespart werden. So sind immense Energieeinsparungen erzielbar und speziell bei fossilen Energieträgern wie Heizöl und Erdgas, auch Treibhausgaseinsparungen enormen Ausmaßes. Es gilt hier also das Motto: Jedes Grad (weniger) zählt! Im Herbst und Winter die Heizung zu radikal herunterzufahren (Raumtemperaturen von unter 15 Grad Celsius) oder sogar ganz auf das Heizen zu verzichten, ist allerdings auch keine empfehlenswerte Option, da sonst die Gefahr von Schimmelbildung in erheblichem Maße ansteigt. Neben der Regulierung der Temperatur helfen weitere Maßnahmen den Verbrauch an Heizungsenergie zu verringern. So gilt es beim Lüften, stets nur kurz Stoßlüften (fünf bis maximal zehn Minuten) und für diese Zeit den Heizregler auf Aus zu stellen, da sonst die Wärme im wahrsten Sinne des Wortes zum Fenster hinausgeblasen wird. Wenn das Fenster nur gekippt wird, gilt Selbiges, da sonst nur unnötig Wärme verbraucht wird, ohne dass der Raum dadurch spürbar wärmer wird. Während der Heizperiode ist allerdings generell zu empfehlen, nur kurz Stoßzulüften, statt das Fenster für längere Zeit zu kippen. Florian S. Roth Gemeinden Baienfurt, Baindt und Berg Koordinator für eine klimaneutrale Kommunalverwaltung - gefördert durch das Ministerium für Umwelt, Klima und Energiewirtschaft Baden- Württemberg Telefon: 0157-80661690 E-Mail: klima@b-gemeinden.de[mehr]

Dateityp: PDF-Dokument
Dateigröße: 17,49 KB
Verlinkt bei:
    Zuletzt geändert: 14.07.2022
    Klimaspartipp_des_Monats_August.pdf

    (Klima-) Spartipp des Monats August: (Bildschirm) Ganz aus, ist das Neue voll IN Ob daheim oder im Büro, wenn wir für längere Zeit den Raum verlassen ist es wichtig, immer den Bildschirm und Rechner in den Energiesparmodus zu versetzen, beziehungsweise komplett auszuschalten und herunterzufahren. Das Herunterfahren des Rechners lohnt sich stromverbrauchstechnisch und damit auch aus Klimasicht bereits ab 15 Minuten, also beispielsweise bei den 30 bis 45 Minuten einer üblichen Mittagspause oder aber wenn daheim mal etwas Längeres dazwischenkommt. Zudem sorgt ein regelmäßiger Neustart des Rechners dafür, dass dieser wieder schneller und zuverlässiger laufen kann. Natürlich wird einmal, wenn es schnell gehen soll vergessen den Bildschirm auszuschalten oder den Computer herunterzufahren. Hier kann daher ein einfacher Merksatz helfen: Gehst du für länger aus dem Raum hinaus, schalt´ auch Rechner und Bildschirm aus! Wir wäre es daher mit dem Motto: Einfach mal abschalten. Aber auch die Verwendung des Energiesparmodus bringt schon sehr viel, denn eigene Messungen haben ergeben, dass Rechner im Betrieb 20 W in der Stunde verbrauchen, aber im Energiesparmodus lediglich 0,5 Watt. Beim aktivieren dieses Modus gibt es also enorme Einsparpotenziale. Wer als eine Art private Wattsparchallenge durchführen möchte, dem ist das Beherzigen dieser Tipps dringend zu empfehlen. Natürlich ist es neben Rechner und Bildschirm auch genauso wichtig, andere elektronische Geräte wie Drucker, Fernseher, Mikrowellen, und viele weitere ebenfalls auszuschalten, wenn diese nicht mehr verwendet. Florian S. Roth Gemeinden Baienfurt, Baindt und Berg Koordinator für eine klimaneutrale Kommunalverwaltung - gefördert durch das Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg Telefon: 0157-80661690 E-Mail: klima@b-gemeinden.de[mehr]

    Dateityp: PDF-Dokument
    Dateigröße: 32,12 KB
    Verlinkt bei:
      Zuletzt geändert: 29.07.2022
      Klimaspartipp_des_Monats_Oktober.pdf

      (Klima-) Spartipp des Monats Oktober: Das sind nie 20 Zentimeter! Mit dieser Aussage lässt sich exakt beschreiben, wie die Situation in der Umgebung vieler Heizkörper und Heiznischen ist. Denn in der Tat sind viele Heizkörper und Heiznischen zugedeckt und zugestellt. Gerade bei den teils sehr niedrigen Heiztemperauren im kommenden Winter tut dies gleich doppelt weh. Auf der einen Seite ist es so, dass in solchen Fällen die warme Luft nicht ausreichend im Raum zirkulieren kann, weshalb dieser nur zu einem sehr kleinen Teil wirklich beheizt ist. Außerdem wird hier natürlich auch mehr Energie benötigt, da wir hier natürlich mehr frieren und sofern möglich, den Heizregler dann auch höher drehen. Als „Faustregel“ (dies hat übrigens weder etwas mit einer der wohl bekanntesten literarischen Figuren von Goethe, noch mit irgendwelchen Bud Spencer-Filmen zu tun) gilt: Möbel, Unterlagen, Blumentöpfe, etc. sind mindestens 20 Zentimeter vom Heizkörper entfernt aufzustellen und aufzubewahren. Sonst wird der Heizkörper zugestellt und damit die Warmluftzirkulation massiv beeinträchtigt. Als Merksatz gilt hier: Kann die von Heizung erwärmte Luft nicht zirkulieren, muss ein Großteil des Raumes sehr arg frieren. Aber wie viel sind denn eigentlich diese ominösen 20 Zentimeter in der Praxis? Wer sich diese Frage stellt und sich mit dem Abschätzen von Abständen genauso schwertut, wie dies bei mir der Fall ist, dem habe ich hier eine praktische Hilfe: Ein einfaches Messinstrument aus dem Alltag, dass so gut wie überall vorhanden sein dürfte, ist ein normales DIN A4-Blatt, da dessen Breite knapp über 20 Zentimeter beträgt. Also ganz einfach einen DIN A4-Block querhalten und schon ist dies der perfekte Meterstab zum Abstandmessen zwischen Heizkörpern und Möbeln oder Gegenständen. Florian S. Roth Gemeinden Baienfurt, Baindt und Berg Koordinator für eine klimaneutrale Kommunalverwaltung - gefördert durch das Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg Mobil: 0157 80661690 klima@b-gemeinden.de[mehr]

      Dateityp: PDF-Dokument
      Dateigröße: 109,08 KB
      Verlinkt bei:
        Zuletzt geändert: 24.10.2022
        Klimaspartipp_des_Monats_November.pdf

        Klima-Spartipp des Monats November: Mit Fuß vom Gas, macht Tanken „Spaß“ Nun gut, ich muss zugeben, Spaß ist an dieser Stelle vielleicht der falsche Ausdruck. Aber eigentlich ist ja auch nicht der Tankvorgang an sich das Schlimme, sondern nur, dass dieser uns oftmals so teuer zu stehen kommt. Aber es gibt etwas Hoffnung für alle, die auf das Auto schlichtweg angewiesen sind, da die Anbindung über den ÖPNV zu schlecht ist und der Weg, um ihn zu Fuß oder mit dem Rad zurückzulegen, schlichtweg zu weit ist. Denn egal ob mit dem Privat-PKW oder auf Dienstfahrten bei der Arbeit, wir alle haben die Möglichkeit Sprit zu sparen. Wer nicht alleine fährt und Fahrgemeinschaften bildet, kann die Fahrtkosten aufteilen und zudem den Schadstoffausstoß insgesamt verringern. Über eine Anpassung der Fahrweise lässt sich viel Geld und bis zu 25 Prozent Kraftstoff einsparen. Auch Elektro- und Hybridfahrzeuge können über eine entsprechend angepasste Fahrweise den Verbrauch und damit die Betriebskosten spürbar reduzieren. Manche der Tipps beziehen sich allerdings nur auf Benziner und Diesel, da dies derzeit die meisten Automobile hierzulande sind. Vorausschauendes Fahren vermeidet ständiges Bremsen Wer nicht andauernd Gas gibt und bremst, sondern vorausschauend fährt und den Schwung während der Fahrt nutzt, macht Autofahrten ökonomischer. Kurzfristige Temposchwankungen können wir ausgleichen, indem wir das Motto „Fuß vom Gas“ beherzigen, statt zu bremsen und anschließend wieder zu beschleunigen. Denn nach jedem Schaltvorgang ist ein erneuter Tritt aufs Gaspedal notwendig und dieser kostet jedes Mal Sprit. Wer ausreichend Abstand zum vorausfahrenden Fahrzeug hält, fährt daher nicht nur sicherer, sondern kann zudem gut die Motorbremswirkung nutzen. Beim Heranrollen an eine Ampel ist es daher ratsam, bei Geschwindigkeiten über 40 km/h einfach den Fuß vom Gaspedal zu nehmen, ohne auszukuppeln. Die meisten Autos sind mit einer Schubabschaltung ausgerüstet, die in dieser Situation die Kraftstoffzufuhr sperrt. Auch am Ortseingang stellt dies übrigens eine einfache Möglichkeit zum Kraftstoff sparen dar. Schnell hochschalten und mit niedriger Drehzahl fahren Auf Autobahnen und Landstraßen gilt: Je niedriger die Drehzahl und das Tempo, desto niedriger der Verbrauch, der Schadstoffausstoß und die Lärmentwicklung. Im höchstmöglichen Gang zu fahren, ist daher eine Grundbedingung für spritsparendes Fahren. Deshalb gilt: Nach dem Anfahren schnell beschleunigen, möglichst rasch die Gänge hochschalten und mit niedrigen Drehzahlen die gewählte Geschwindigkeit beibehalten. Motor bei längeren Stopps abschalten Bei Stopps ab mindestens 30 Sekunden, beispielsweise an einer Bahnschranke, sollte der Motor abgeschaltet werden, denn auch im Leerlauf verbraucht dieser Kraftstoff und stößt weiterhin Treibhausgase aus. Unnötigen Luftwiderstand und unnötiges Gewicht vermeiden Um Missverständnissen vorzubeugen, mit unnötigem Gewicht vermeiden, ist nicht gemeint, unliebsame Beifahrer per Schleudersitz aus dem Auto zu befördern. Zumal dieser wohl vor allem in den Autos eines bestimmten britischen Geheimagenten verbaut sein dürfte und weniger in Privatfahrzeugen. Es geht hier auch nicht darum, mitfahrende Personen an Autobahnraststätten zu vergessen, wie dies öfters mal in den Medien berichtet wird. Aber wochenlang mit Getränkekisten im Kofferraum durch die Gegend zu tuckern, ist wirklich nicht nötig. Gerade auf längeren Fahrten sollten einzelne Getränkeflaschen zum Durstlöschen mitgenommen werden, aber eine ganze Kiste braucht es dafür nicht. Nicht benötigte Aufbauten wie Dachgepäckträger sorgen für einen größeren Luftwiderstand und erhöhen ebenso das Gewicht. Ein zusätzliches Gewicht von 100 Kilogramm in einem Mittelklasse-Pkw erhöht grob geschätzt den Spritverbrauch um 0,7 Liter auf 100 Kilometern. Nicht benötigte Stromfresser ausschalten Auch elektrische Funktionen des Autos wie Klimaanlage, Fensterheber oder Heckscheiben- und Sitzheizung beeinflussen den Kraftstoffverbrauch. Je mehr Strom die Lichtmaschine erzeugen muss, desto größer wird der Drehwiderstand, weshalb in der Folge der Verbrennungsmotor mehr Kraft für den Antrieb aufwenden muss. Deshalb sollte im Auto kein Stromverbraucher laufen, wenn es nicht unbedingt notwendig ist. Die Nummer eins unter den Stromfressern ist übrigens die Klimaanlage. Kurzstrecken vermeiden und Reifendruck überprüfen Wer Sprit sparen möchte, sollte auf kurze Fahrten unter fünf Kilometern mit dem Auto gänzlich verzichten. Diese Strecken können normalerweise zu Fuß oder mit dem Rad zurückgelegt werden. Denn Motoren benötigen am meisten Sprit, wenn diese noch kalt sind. So kann es durchaus sein, dass selbst Kleinwagen auf den ersten Metern einen Durchschnittsverbrauch von bis zu 30 Liter pro 100 Kilometer aufweisen. Erst wenn der Motor nach knapp vier Kilometern seine Betriebstemperatur erreicht, ist ein optimaler Spritverbrauch möglich. Außerdem sollte wer Auto fährt, stets darauf achten, dass die Reifen den vom Hersteller empfohlenen Reifendruck aufweisen. Breitreifen verlängern übrigens den Bremsweg und erhöhen den Verbrauch. Leichtlaufreifen hingegen haben einen verringerten Rollwiderstand, sind daher auch leiser und reduzieren merklich den Spritverbrauch. Wer all diese Tipps beherzigt und umsetzt, hat vielleicht wirklich etwas „Freude am Tanken“, zumindest beim Blick auf manche Nachbartanksäule. Florian S. Roth Gemeinden Baienfurt, Baindt und Berg Koordinator für eine klimaneutrale Kommunalverwaltung - gefördert durch das Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg Mobil: 0157 80661690 klima@b-gemeinden.de[mehr]

        Dateityp: PDF-Dokument
        Dateigröße: 288,80 KB
        Verlinkt bei:
          Zuletzt geändert: 18.11.2022
          Klimaspartipp_des_Monats_Dezember_22.pdf

          Klima-Spartipp des Monats Dezember: Kleiner Strich, große Wirkung Laut Empfehlung des Umweltbundesamtes sollte die Raumtemperatur im Wohnbereich maximal 20 Grad Celsius betragen. Für die Küche und das Schlafzimmer werden Raumtemperaturen von 18 beziehungsweise 17 Grad Celsius empfohlen. Aber mit welcher Einstellung des Thermostats, sofern dieser vorhanden und regelbar ist, erreiche ich die empfohlenen Raumtemperaturen auch tatsächlich? Für den Wohnbereich gilt hier: Es kommt nun bald die Winterszeit, wo‘s draußen wieder richtig schneit, drum wähl die Stufe drei, dann ist die Friererei vorbei. Gut, ganz so einfach ist es dann doch nicht, denn wir alle haben natürlich ein ganz unterschiedliches Temperaturempfinden und Stufe 3 gilt auch nur als Empfehlung für den Wohnbereich. Daher hier einmal ein kurzer Exkurs zu den Einstellmöglichkeiten eines Heizreglers (Thermostats). Frei nach dem Motto: Kleiner Strich, große Wirkung! Normalerweise hat jeder regelbare Thermostat Einstellmöglichkeiten von Sternchen (Frostschutz) bis Stufe 5. Stufe 1 entspricht dabei ungefähr 12 Grad Celsius und jede weitere Stufe jeweils in etwa 4 Grad Celsius mehr. Daher werden 20 Grad Celsius Raumtemperatur üblicherweise bei Stufe 3 erreicht. Denn auch wenn diese Striche auf dem Thermostat so klein und unscheinbar wirken, so haben diese doch eine große Wirkung. Denn mit einer um nur ein Grad geringeren Raumtemperatur, lassen sich bereits 6 Prozent an Heizenergie und damit auch erhebliche Heizkosten einsparen. Da Theorie und Praxis manchmal doch ein paar verschiedene Schuhe sind, lohnt es sich in der Praxis aber auf jeden Fall immer, die Raumtemperatur regelmäßig mit einem Thermometer zu überprüfen. Wer will auf Nummer sicher gehen, sollt auf den Thermometer sehen! Zum Abschluss für dieses Jahr, wünsche ich Ihnen allen eine schöne und besinnliche Weihnacht und alles Gute für das Jahr 2023. Florian S. Roth Gemeinden Baienfurt, Baindt und Berg Koordinator für eine klimaneutrale Kommunalverwaltung - gefördert durch das Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg Mobil: 0157 80661690 klima@b-gemeinden.de[mehr]

          Dateityp: PDF-Dokument
          Dateigröße: 249,39 KB
          Verlinkt bei:
            Zuletzt geändert: 12.12.2022
            Stecker-Solargeräte_Jan_23.pdf

            Strom vom eigenen Balkon Kleine Stecker-Solargeräte für Balkon, Terrasse, Garten, Fassade oder Garage sind in letzter Zeit ganz groß in Mode. Vor allem da die Strompreise auf immer neue Höchststände klettern und dies für viele Mieterinnen und Mieter oftmals die einzige Möglichkeit ist, selber „grünen“ Strom für die Eigennutzung zu produzieren, werden momentan sehr viele Minisolaranlagen angeschafft. Allerdings gilt es hierbei einige Dinge zu beachten: Für wen sind Stecker-Solargeräte geeignet? Prinzipiell natürlich für alle, wobei sich die Anschaffung vor allem für die Personen lohnt, die tagsüber öfters zu Hause sind. Nur wenn im Tagesverlauf auch größere Strommengen verbraucht werden, kann sich eine solche Investition richtig „lohnen“. Denn bei Minisolaranlagen gilt, dass aller Strom, der nicht selbst verbraucht wird, kostenlos ins Netz eingespeist wird. Besonders geeignet sind solche Geräte daher für Mehrfamilienhäuser und Mietshäuser, wobei stets eine Zustimmung vom Vermieter erforderlich ist. Daneben wird natürlich auch ein geeigneter Standort benötigt. Was gilt es bei der Standortwahl zu beachten? Egal ob Balkon, Garten, Terrasse, Fassade oder Garage, wichtig ist immer ein sonniger Standort, der über einen bestehenden Stromanschluss verfügt. Zudem sollte der Standort kaum oder am besten gar keinen Schatten haben. Da Minisolaranlagen rein auf Eigenstromnutzung ausgelegt sind, empfiehlt sich hier eine Ost- West-Ausrichtung. Lohnt sich der Kauf eines Stecker-Solargeräts? Wer überprüfen will, ob und nach wie vielen Jahren sich die Anschaffung finanziell lohnt, kann dies ganz einfach mit dem Stecker-Solar-Simulator der HTW Berlin überprüfen. Sie finden diesen unter: https://solar.htw-berlin.de/rechner/stecker-solar-simulator Wie viel Leistung darf die Anlage haben? In Deutschland ist nur ein Modul mit maximal 600 Wpeak Nennleistung zulässig. Muss ich den Vermieter um Zustimmung bitten? Ja, eine Zustimmung der Vermieterin oder des Vermieters ist immer erforderlich. Muss ich die Anlage irgendwo anmelden? Ja, die Anlage muss beim zuständigen Netzbetreiber angemeldet werden, was im Gegensatz zu Photovoltaikanlagen aber selbst durchgeführt werden kann. Hierzu muss ein Formular heruntergeladen und ausgefüllt werden sowie eine Verzichtserklärung, dass auf die Vergütung bei Stromeinspeisung verzichtet wird. Spätestens einen Monat nach Inbetriebnahme ist auch ein Eintragen der Anlage im Marktstammdatenregister nötig. Wie teuer sind solche Anlagen? Je nach Leistung (von 300 bis 600 Wpeak) kosten diese zwischen 500 und 1.000 Euro. Seit 01.01.2023 sind Photovoltaikanlagen bis maximal 30 kWpeak (auf oder in der Nähe eines Wohngebäudes) von der Umsatzsteuer befreit. Stecker-Solargeräte fallen ebenfalls hierunter, weshalb diese voraussichtlich günstiger werden, sofern die Unternehmen diese Änderung der Besteuerung vollumfänglich weitergeben. Ein Standardmodul ist 1m x 1,7m groß, hat eine Nennleistung von 350 Wpeak und einen optimalen Ertrag von circa 280 kWh im Jahr. Wer auf Nummer sicher gehen will, benötigt zusätzlich noch eine Energiesteckdose für circa 80 Euro, die nur durch entsprechendes Fachpersonal eingebaut werden darf. Personalkosten kommen hier also noch dazu. Laut Auskunft der Verbraucherzentrale Baden-Württemberg ist eine Energiesteckdose allerdings nicht zwingend erforderlich, sondern ein normaler Schukostecker (Schutz-Kontakt- Stecker) ausreichend. Bei auftretenden Problemen, die in der Praxis aber äußerst selten sind, haftet man dann allerdings selber. Worauf es sonst noch zu achten gilt? Um Gefahren zu vermeiden sollte immer auf einen Netz- und Anlagenschutz (NA-Schutz) geachtet werden und niemals Mehrfachstecker verwendet werden. Ein Anschluss mehrerer Anlagen ist in Deutschland gesetzlich verboten. Bei den Wechselrichtern, die üblicherweise im Lieferumfang der Minisolaranlage enthalten sind, ist darauf zu achten, dass diese VDE AR 4105 zertifiziert sind und die für die Anmeldung beim Netzbetreiber bzw. die Eintragung ins Marktstammdatenregister benötigte Konformitätserklärung vorliegt. In sieben Schritten zum eigenen Sonnenstrom Schritt 1: Prüfen, ob und wo eine geeignete Fläche vorhanden ist Schritt 2: Angebote einholen Fachbetrieb oder Internet - Deutsche Gesellschaft für Sonnenenergie DGS Schritt 3: Stromzähler prüfen, dass dieser nicht Rückwärtslaufen kann (entsprechendes Piktogramm beachten) und Steckdose prüfen bzw. neue Steckdose anschließen lassen Schritt 4: Bestellung Solarmodul mit Wechselrichter zur Umwandlung des Stroms Schritt 5: Anmelddung der Anlage beim Netzbetreiber nötig: Formular + Verzichtserklärung (keine Vergütung bei Stromeinspeisung) ausfüllen Schritt 6: Eintragen der Anlage ins Marktstammdatenregister Schritt 7: Einstecken des Stecker-Solargeräts in Steckdose und selbst Solarstrom erzeugen Florian S. Roth Gemeinden Baienfurt, Baindt und Berg Koordinator für eine klimaneutrale Kommunalverwaltung - gefördert durch das Ministerium für Umwelt, Klima und Energiewirtschaft BW Mobil: 0157 80661690 klima@b-gemeinden.de[mehr]

            Dateityp: PDF-Dokument
            Dateigröße: 436,97 KB
            Verlinkt bei:
              Zuletzt geändert: 12.01.2023
              Energiesparen_im_Haushalt_2015.pdf

              Energiesparen im Haushalt Praktische Tipps für den Alltag IMPRESSUM Herausgeber und Bestellungen Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg Kernerplatz 9, 70182 Stuttgart Telefon: 0711 126-0 poststelle@um.bwl.de Konzeption, Text und Redaktion CONSISTE, Ursula Rath Dorfstraße 42, 72074 Tübingen Telefon: 07071 687163 www.consiste.de © Copyright/Fotonachweis: CONSISTE www.hartmann-energietechnik.de, S. 32 www.mees-zacke.de www.fotolia.de (© Robert Neumann S. 4, © Irina Fischer S. 4, 15, © B. Lipbbach S. 1, 4, 20, © Eisenhans, S. 30) EnergieAgentur.NRW, S. 28, 29 Wuppertal-Institut S. 33 Gestaltung: www.mees-zacke.de Aktualisierung: pVS – pro Verlag und Service GmbH & Co. KG Stauffenbergstraße 18 74523 Schwäbisch Hall www.pro-vs.de Druckerei: Schwäbische Druckerei, Stuttgart Das verwendete Papier ist mit dem „Blauen Engel“ zertifiziert. Juli 2015 klimaneutral natureOffice.com | DE-327-576920 gedruckt 205_15 U2 mit Klima-Logo:Layout 1 11.09.2015 15:52 Uhr Seite 1 Konzipiert und verfasst wurde die Broschüre von Energiesparen im Haushalt Praktische Tipps für den Alltag Inhaltsverzeichnis 3 Vorwort 4 Stromsparen – wozu? 6 Begriffe begreifen 10 Helle Sparfreude 13 Waschen im Schongang 15 Wäscheleine am Stromzähler 17 Eiskalt kalkuliert 19 Sparsame Spülhelfer 21 Den Deckel drauf halten 23 Stromfresser im Büroschlaf 25 Unterhaltungselektronik im Stromstreik 27 Dauerläufer im Keller 29 Kühle Küche, warme Stube 33 Heiße Quellen 36 Weiterführende Informationen ENERGIESPAREN 3 Der Klimaschutz und die Umsetzung der Energiewende sind Herausforderungen, denen wir uns in Baden-Württemberg stellen müssen. Die Landesregierung hat sich deshalb zum Ziel gesetzt, Baden-Württemberg in Sachen Energiewende und Klimaschutz zu einer Musterregion zu entwickeln. Wir haben uns vorgenommen, die CO 2 -Emissionen aus unserem Land bis 2050 um bis zu 90 Prozent abzusenken. Um dieses Ziel zu erreichen, müssen wir schrittweise in den kommenden Jahren sowohl die Strom- und Wärme- erzeugung als auch den Verkehr fast vollständig auf emis- sionsfreie Alternativen umstellen. Hierfür brauchen wir Spitzentechnologie – daher ist der bevorstehende Wandel eine Riesenchance für die innovativen Unternehmen in Baden-Württemberg. Mit Technik allein werden die notwendigen Veränderungen aber nicht zu schaffen sein. Ohne Änderungen im Konsum- verhalten jedes und jeder Einzelnen wird es nicht gehen. Jeder kann durch sein Konsumverhalten einen Beitrag leisten. Die Beispiele, wie durch einfache Maßnahmen und ohne auf Komfort verzichten zu müssen, Energie und damit auch Kosten eingespart werden können, sind viel- fältig. Bei Haushaltsgeräten können wir als Konsumenten auf geringen Energieverbrauch achten. Aber auch durch energiebewusstes Verhalten, etwa beim täglichen Lüften der Wohnung, können wir einen Beitrag zur Energiewende leisten. Ich setze auf Ihre Mitwirkung und hoffe, dass diese Broschüre Anregungen gibt und Ihnen bei der Umsetzung hilft. Franz Untersteller MdL Minister für Umwelt, Klima und Energiewirtschaft des Landes Baden-Württemberg Vorwort Franz Untersteller MdL ENERGIESPAREN4 Stromsparen – wozu? Energie- und Rohstoffverbrauch der Menschheit sind eine Belastung für Umwelt und Klima, und dies schlägt in der Haushaltskasse zu Buche, besonders in Zeiten mit hohen Energiepreisen. Doch manchmal ist es gar nicht schwer, die Belastung zu verringern, auch und gerade im privaten Haushalt. Diese Broschüre richtet sich speziell an kleine Haus- halte. Diese haben ein Interesse an der Beschaffung von und am sparsamen Umgang mit kleineren Haushaltsgeräten. Es sind jedoch auch viele Informationen enthalten, die für alle Haushaltsgruppen gelten, wie etwa zu den Fragen: Wo lohnt es sich anzufangen? Was kann gleich geschehen, wo muss eine anstehende Neuanschaffung abgewartet werden, um wirk- sam einzugreifen? Viele Investitionen in energiesparende Geräte sind wirtschaftlich – ökonomischer und ökologischer Vorteil können sich durchaus ergänzen. Ein Zwei-Personen-Haushalt kann dann mit 1.500 kWh auskommen – der Unterschied zu durchschnittlichen Geräten ist bemerkenswert. JAHRESSTROMVERBRAUCH IM 2-PERSONEN-HAUS- HALT FÜR VERSCHIEDEN EFFIZIENTE GERÄTE Zahlenangaben in Kilowattstun- den (gerundete Werte) Durchschnitt- liche Geräte sparsame Neugeräte sparsame Neugeräte + Optimierung + Substitution Kühlen 250 120 250 ^) Gefrieren 280 180 Kochen + Backen (Elektro) 350 300 270 Spülen 200 100 °) 100 °) Waschen 140 110 80 °) Trocknen 260 130 *) – Licht 300 100 80 Informations- technik 150 100 80 Unterhaltungs- elektronik 160 100 80 Pumpe 250 60 60 Diverses 560 200 150 Summe 2.900 1.500 1.150 °) mit Warmwasseranschluss *) Wärmepumpentrockner ^) Kühl-Gefrier-Kombination statt 2 Geräten Wird zudem dort, wo es möglich ist, Strom durch einen anderen Energieträger ersetzt, z. B. durch einen Warmwasseranschluss für Spül- und Waschmaschine, In dieser Broschüre sind zahlreiche Hinweise zum sparsa- men Umgang mit Energie im Haushalt zusammengestellt, die sich praktisch sofort verwirklichen lassen. Es wird jeweils beschrieben, welche Unterschiede im Verbrauch zwischen effizienten und wenig sparsamen Elektrogeräten bestehen und worauf beim Gerätekauf zu achten ist. WODURCH WIRD DIE STROMRECHNUNG BESTIMMT? Ein Ein-Personen-Haushalt hat in Deutschland einen durchschnittlichen Stromverbrauch von gut 1.700 kWh, bei zwei Personen sind es im Mittel 2.900 kWh. Umgerechnet in Kilogramm Kohlendioxid sind das bei einer Person etwa knapp 1.000 kg pro Jahr, bei zwei knapp 1.700 kg. Ein ganz erheblicher Teil dieses Stromverbrauchs kann durch bewusst sparsamen Umgang mit den Geräten vermieden werden, besonders aber durch den Kauf eines effizienteren Gerätes, wenn ein Austausch ansteht. Die Haushaltsgroßgeräte für Kochen, Spülen, Kühlen, Waschen und Trocknen benötigen im durchschnittlichen Zwei-Personen-Haushalt jeweils zwischen 140 und 350 kWh pro Jahr. Kleingeräte wie Staubsauger, Föhn und Bohr- maschine zusammen verbrauchen etwa gleich viel wie ein Haushaltsgroßgerät. Dasselbe gilt für den Lichtstromver- brauch, wobei hier die Spanne zwischen den Haushal- ten sehr hoch ist, abhängig davon, wie viele Leuchten in Betrieb sind, ob bereits Energiespar- oder LED-Lampen eingesetzt werden, und ob beim Verlassen des Raums das Licht abgeschaltet wird. Für einige Anwendungen ist eine Ersparnis von 50 Pro- zent möglich, wenn neue effiziente Geräte angeschafft und diese bewusst sparsam genutzt werden! In Einzelfällen wie bei den Heizungsumwälzpumpen oder bei der Beleuch- tung kann sogar ein noch höherer Prozentsatz eingespart werden. ENERGIESPAREN 5 Gas fürs Kochen, wird auf den Einsatz eines Wäschetrock- ners verzichtet und insgesamt sehr bewusst mit der Energie umgegangen, kann ein sparsamer Zwei-Personen-Haushalt mit nur 1.150 kWh Stromverbrauch jährlich auskommen – das entspricht einer Einsparung von rund 60 % gegenüber dem heutigen Durchschnitt! WANN LOHNT EINE NEUANSCHAFFUNG? Wenn ein Haushaltsgroßgerät einen Defekt hat, stellt sich die Frage, ob sich eine Reparatur rentiert. Generell gilt: Geräte, die älter als acht bis zehn Jahre sind, sollten nicht mehr repariert werden, es sei denn, es handelt sich um sehr hochwertige Fabrikate. Normalerweise ist nämlich nach dieser Zeit ein neueres Gerät so viel effizienter als das alte, so dass sich der Neukauf lohnt. Unschön dabei ist, dass Material und Werkstoffe, soge- nannte „Graue Energie“, weggeworfen werden. Dieses Manko kann durch die Auswahl von Geräten, deren Bau- stoffe gut wieder verwertbar sind, wettgemacht werden. Der Blaue Engel des Umweltbundesamtes ist hierfür ein Kennzeichen. WO FINDET SICH WAS? Für alle Haushaltsgroßgeräte gibt es nachstehend jeweils ein eigenes Kapitel, in dem • grundsätzliche Informationen zum Gerät, • Vorschläge zur sparsamen Nutzung sowie • Hinweise für eine Neuanschaffung enthalten sind. Ebenso findet sich ein Kapitel über Unterhaltungselektro- nik, also zu Fernseher, Video- und Audio-Geräten, sowie ein Kapitel zu Informationstechnik, also PC, Drucker & Co. Auch für die Beleuchtung ist ein Kapitel reserviert. Wenig im Bewusstsein ist, dass es „heimliche“ Stromver- braucher gibt, nämlich die Umwälzpumpen für Warmwas- ser und Heizung. Gerade hier sind die Einsparmöglichkei- ten besonders hoch. Wird das Wasser elektrisch erwärmt oder wird per Nacht- speicherheizung geheizt, sind dies die mit Abstand größten Stromverbraucher. Auch hierzu gibt es jeweils ein Kapitel mit Informationen. Durch vernünftiges Lüften und Heizen lässt sich ebenfalls Energie einsparen und zudem wird Bauschäden vorge- beugt. Dies und die Funktionsweise von Heizungsregelung und Thermostatventil werden in einem Kapitel erläutert. Schauen Sie sich zunächst die Kapitel an, die für Sie be- sonders interessant sind, weil in Ihrem Haushalt vielleicht eine Neuanschaffung oder eine Reparatur ansteht. Diese Broschüre wird dort am hilfreichsten sein, wo kon- krete Fragen zu beantworten sind. Am Ende des Heftes sind weiterführende Informationsquellen benannt. Denn wenn hier auch vieles angesprochen wird, bleibt doch sicher auch manches offen – oder es soll eine Frage noch umfänglicher beantwortet werden, dann empfiehlt es sich, aus einer dieser Quellen zu schöpfen. EINIGE WICHTIGE INFORMATIONEN Als Abkürzungen werden im Text benutzt kWh für die Einheit Kilowattstunde (Strom oder Gas), W für Watt, kg CO2 für Kilogramm Kohlendioxid. Betriebskosten sind in dieser Broschüre mit 28,8 Cent pro Kilowattstunde Strom (Quelle: www.strompreise.de, Stand 2015), 6,4 Cent pro Kilowattstunde Gas (Quelle: www.verivox.de) und 4 Euro pro Kubikmeter Wasser + Abwasser berechnet, entsprechend der Preis- situation im Sommer 2013, jeweils inklusive Umsatz- steuer. Preissteigerung und Inflationsrate werden nicht berücksichtigt, für die hier diskutierten Investitionen im Privathaushalt reicht eine sogenannte statische Berech- nung aus. Standzeit oder Lebensdauer der Geräte sind Erfah- rungswerte, die je nach Quelle differieren. Für Kühl- und Gefriergeräte werden oft 15 Jahre angesetzt, für Waschmaschinen hingegen nur 11 Jahre, was ange- sichts der hohen mechanischen Belastung durch das Schleudern auch vernünftig ist. Spülmaschinen und Trockner liegen eher bei 13 Jahren. Auch von der Herstellerfirma hängt die Standzeit ab; die Stiftung Warentest macht immer wieder Umfragen dazu. ENERGIESPAREN6 Begriffe begreifen Bei der Beschäftigung mit dem Stromverbrauch im eigenen Haushalt tauchen die Fachbegriffe „EU-Label“, „Wirt- schaftlichkeit“ und „Stand-by“ oder auch „Leerlaufverluste“ im Zusammenhang mit vielen der Geräte auf. Hier eine zusammenfassende Erklärung. Dieses Label gilt seit 2011 für die genannten Geräte, vorhandene Geräte mit bisherigem Label darf der Handel noch abverkaufen. (Quelle: ZVEI 2010) ENERGIEETIKETT Seit vielen Jahren gibt es als verbindliche Kennzeichnung für Haushaltsgeräte das Energieetikett oder EU-Label. Hersteller und Lieferanten im EU-Raum müssen für ihre Geräte verbindliche Daten liefern, Händler die Geräte im Geschäft mit dem jeweils korrekten Label versehen. Für jede Gerätegruppe werden die einzelnen Gerä- tetypen nach einem vorgegebenen Mess- verfahren einer Kategorie von A+++ bzw. A (effizient) bis D bzw. G (ineffizient) zu- geordnet. Damit wird den Endkundinnen und -kunden ein einfaches Instrument an die Hand gegeben, die energietechnische Qualität der Geräte zu vergleichen. Seit Dezember 2010 gibt es dieses Label für Kühl- und Gefriergeräte sowie für Wasch- und Spülmaschinen und für Wäsche- trockner in einer modifizierten Form: Die schlechtesten Labelklassen E, F und G sind entfallen und es gibt zusätzlich die Klassen A+, A++ und A+++ für die effizientesten Geräte. Wenn also nun ein Gerät der Effizi- enzklasse A angeschafft wird, dann ist dies am heutigen Markt eines mit vergleichswei- se hohen Verbrauchswerten! Kühlgerate, die schlechter als A+ bewertet sind, dürfen daher seit Juli 2012 nicht mehr neu in die Läden kommen. Seit 1. September 2013 gilt das neue EU- Energielabel für Lampen. Für Leuchten gibt es seit 1. März 2014 ein Label mit den Klas- sen A++ bis E. Ein neues EU-Energielabel mit den Effizienzklassen von A++ bis E wurde im September 2013 eingeführt, wel- ches für Lampen mit ungerichtetem und gerichtetem Licht gilt. Leuchtdioden (LED – Light Emitting Diodes) und Energiespar- XYZ kWh/annum YZ dBYZ LXYZ L 2010/1060 D C B A A+ A++ A+++ A++ ENERG Y IJA IE IAΙ Ι Ι Ι Ι Ι Name oder Marke des Herstellers, Typenbezeichnung Energieefzienzklasse Energieverbrauch in kWh/Jahr (auf Grundlage der Ergebnisse der Normprüfung) Der tatsächliche Energieverbrauch hängt von der Nutzung des Gerätes ab. Gesamtnutzinhalt aller Kühlfächer (Fächer ohne Sternekennzeichnung) Gesamtnutzinhalt aller Tiefkühlfächer (Fächer mit Sternekennzeichnung) Geräuschemission in dB(A) re 1pW (Schallleistung) Bezeichnung der Regulierung ENERGIESPAREN 7 lampen, die als sehr effizient gelten, können auch die Klassen A+ und A++ erhalten. Effiziente Halogenlampen mit ungerichtetem Licht gibt es in Klasse C, mit gerichte- tem Licht in Klasse B. Glühlampen weisen eine geringe Energieeffizienz auf und können maximal in der Klasse D gefunden werden. Sie wurden aus diesem Grund auch schrittweise aus dem Handel genommen. Lampen und LED-Module mit einem Lichtstrom von weniger als 30 Lumen sowie Lampen und LED-Module, die für den Betrieb mit Batterien geeignet sind, sind von der Kenn- zeichnungspflicht ausgenommen. Für Waschtrockner werden seit 29. Mai 2013 die Klas- sen A+, A++ und A+++ vergeben. Geräte mit einem A+++ verbrauchen rund 65 % weniger Energie als ein Gerät der Klasse A. Bei kombinierten Wasch- und Trockenautoma- ten gelten weiterhin Energieeffizienzklassen von A (am effizientesten) bis G (sehr ineffizient). Seit 2015 müssen alle betroffenen Zentralheizgeräte mit dem Energielabel Klasse A++ bis Klasse G gekennzeich- net werden. Wärmepumpen erreichen aufgrund ihrer ho- hen Effizienz die oberen Labelklassen ohne Schwierigkei- ten. Eine neue Regelung gilt ab 26. September 2015: Dann erstreckt sich die Scala für die betroffenen Produkte von Klasse A++ bis Klasse G. Ab 2019 werden die Geräte dann in die Energieeffizienzklassen von A+++ bis D eingeteilt. Für TV-Geräte wurde 2011 erstmals ein europaweit einheit- liches Energieverbrauchsetikett eingeführt. Die Energieef- fizienzklassen reichen bisher von A+ (sehr effizient) bis F (sehr ineffizient). Im Stand-by-Betrieb darf das Gerät maxi- mal 0,5 Watt verbrauchen. Im Jahr 2017 wird die Klasse A ++ eingeführt, und ab 2020 auch die Klasse A+++. Staubsauger werden seit 1. September 2014 mit dem neuen EU-Energielabel in den Klassen von A bis G gekennzeich- net. Gleichzeitig wird die maximale Leistungsaufnahme der Geräte auf 1.600 Watt begrenzt. Damit werde laut www.stromeffizienz.de der jährliche Energieverbrauch auf weniger als 62 kWh / Jahr und jährliche Kosten von rund 17 Euro. begrenzt. Ein Staubsauger der Energieeffizienz- klasse A etwa benötigt rund 28 kWh / Jahr, was mit Kos- ten von rund 8 Euro zu Buche schlägt. Ab 2017 gibt es die Energieeffizienzklassen A+, A++, A+++. Das neue Label ist sprachneutral gestaltet, um EU-einheit- lich zu sein. Daher steht eine Milchtüte für das Volumen im Kühlgerät und ein Wasserhahn repräsentiert den Wasserverbrauch bei Wasch- oder Spülmaschine. Allerdings wird vorausgesetzt, dass für „kWh / annum“ die Übersetzung „Kilowattstunden pro Jahr“ bekannt ist. Für Lampen gibt es ein Label mit den Klassen A++ bis E. Für Waschtrockner und ebenso für Pumpen gilt weiterhin das bereits bekannte Label mit den Klassen A bis G. Wichtig ist zu wissen, dass die Messverfahren standardisiert sind und deshalb nicht unbedingt den Verbrauch des ein- zelnen Geräts in der praktischen Anwendung im Privat- haushalt wiedergeben. Beispielsweise ist für Spülmaschi- nen genau festgelegt, was für Geschirr in welcher Größe und welcher Stückzahl verwendet werden muss. Diese Standardbeladung wird im praktischen Betrieb kaum vorkommen. Dennoch ist das Label wertvoll, denn es schafft die Möglichkeit, schon beim Kauf Geräte zu vergleichen. Neben dem Energieverbrauch sind bei Spül- maschinen auch die Trocknungsqualität und der Wasser- verbrauch benannt. Das Label enthält für jedes Gerät wichtige Kenndaten dieser Art. In Küchenstudios und Einrichtungshäusern wird häufiger nicht korrekt deklariert als im Fachhandel. Auch der Onlinehandel hat hier Defizite. Die Kundinnen und Kunden müssen konkret nach Verbrauchswerten fragen. WIRTSCHAFTLICHKEIT Der Kauf eines neuen bzw. der Ersatz eines vorhandenen Gerätes kostet zum einen einige hundert Euro für die Anschaffung, zum anderen entstehen durch den Verbrauch von Energie und ggf. auch Wasser laufende Kosten, die so- genannten Betriebskosten. Nur wenige Käufer berücksich- tigen diese beim Kauf. Das ist ungünstig, denn über die gesamte Nutzungszeit der Geräte sind die Betriebskosten oft gleich hoch wie die Anschaffungskosten oder sogar hö- her, und die Unterschiede zwischen den Geräten sind zum Teil erheblich. Für Spülmaschinen kann der Unterschied in den Betriebskosten zwischen sparsamem neuem Modell und ineffizientem Gerät von 400 Euro bis zum doppelten Betrag an Strom und Wasserkosten reichen (über 15 Jahre gerechnet). Ähnlich hohe Kostenunterschiede treten auch bei anderen Gerätegruppen auf. Dies wird in den einzel- nen Kapiteln beschrieben. In diesen Vergleich ist noch nicht eingerechnet, dass Energie und Wasser über die Jahre teurer werden. ENERGIESPAREN8 Wer langfristig plant, hat also gute Gründe, sich für ein effizientes Gerät zu entscheiden, selbst wenn es ein- oder zweihundert Euro mehr kostet als ein Vergleichsgerät. Wenn beides, Anschaffungspreis und Betriebskosten einberechnet werden, wird klar: Das effiziente Gerät ist wirtschaftlicher, auch wenn es anfangs teurer ist. STAND-BY, LEERLAUF UND SCHEIN-AUS Viele Geräte wie z. B. der Fernseher haben eine Stand- by-Funktion. Sie erlaubt es, einen Fernseher oder eine Audioanlage komfortabel vom Sofa aus einzuschalten, zu steuern und wieder auszuschalten. Manchmal ist nur so die Hauptfunktion eines Gerätes erfüllbar, wie z. B. beim Fax- gerät, das überwiegend im Stand-by steht und erst durch das Anrufsignal „aufgeweckt“ wird. Eine neue Richtlinie der Europäischen Union verpflichtet die Hersteller seit 2014, nur noch Geräte mit maximal 1 bzw. 0,5 Watt Stand-by-Bezug auf den Markt zu bringen. Der jeweils höhere Wert gilt für Geräte, die im Stand-by eine Funktion erfüllen, wie z. B. eine Zeitanzeige. Diese Richtlinie wird in der Praxis auch umgesetzt, wie ein Blick in die Verbrauchsdaten aktueller Tests von Stiftung Waren- test zeigt. Eine Verordnung für die oft ineffizienten externen (Stecker-) Netzteile ist laut c‘t Magazin bereits in Arbeit. Ein typisches 65-Watt-Laptop-Netzteil darf demnach in einigen Jahren höchstens noch 0,5 Watt im Leerlauf schlu- cken und muss 87 Prozent Wirkungsgrad erreichen. Netz- teile mit bis zu 51 Watt müssen sich demnach ohne Last mit 0,3 Watt begnügen. Nicht offensichtlich ist, wenn ein elektrischer Verbraucher im „Schein-Aus“ ist: Manche Geräte haben einen Aus- schaltknopf, der keiner ist, der nur die Elektronik vom Netz nimmt, nicht jedoch den Transformator. Ein solcher „Trafo“ gehört zum Netzteil und dient dazu, die übliche Netzspannung von 230 Volt in 12 oder 24 Volt umzuwan- deln, wie es viele Geräte benötigen. Wird er nicht vom Netz getrennt, fließt permanent ein kleiner Strom. Je nach Gerät können das ein, zwei oder drei Watt, bei älteren Modellen auch einmal zehn Watt sein. Umgerechnet auf das Jahr können in letzterem Fall 80 Kilowattstunden Stromverbrauch entstehen, ohne irgendeinen Nutzen. Das entspricht immerhin rund 23 Euro! Schaltbare Steckerleis- ten bieten Abhilfe. Entdecken lassen sich derartige heimliche Verbraucher daran, dass das Netzteil permanent warm ist, dass Kon- trolllampen leuchten, obwohl das Gerät scheinbar aus ist, oder durch Messen mit einem einfachen Wattmeter, welches z. B. in Baumärkten erworben oder in Energiebe- ratungsstellen ausgeliehen werden kann. Zu Beratungs- möglichkeiten finden sich am Ende der Broschüre noch Hinweise. Generell werden solche Energieverluste, die keinen spür- baren Nutzen erzeugen, unter „Leerlaufverluste“ zusam- mengefasst. Das schließt auch Pumpenstrom ein, der die Heizungspumpe betreibt, obwohl alle Heizkörper zuge- dreht sind, und Licht, das brennt, obwohl niemand im Raum ist. Bei der Auswahl neuer Geräte sollten Fragen zur bediener- freundlichen Nutzbarkeit im Vordergrund stehen. Man- che Geräte bieten eine Vielzahl von Funktionen, die nur selten oder nie benötigt werden, sind aber dadurch in der Bedienung unübersichtlich. Manche sind zu klein beschrif- tet oder haben winzige Tasten, die schlecht zu bedienen sind. Hier bestehen bei den Herstellern noch Optimie- rungsmöglichkeiten. Beim Kauf ist der richtige Zeitpunkt, Einfluss zu nehmen. TECHNIKER SAGEN ... Normal-Betrieb zu einem Gerät in üblicher Funktion Stand-by wenn ein Gerät einen Teil der Funktio- nen ausgeschaltet hat, jedoch schnell in Normal-Betrieb zurückkehren kann Ruhezustand (manchmal auch Sleep Mode) wenn beispielsweise ein PC ein paar mehr Sekunden braucht, um aus einer „Schlaf- stellung“ in Normalbetrieb zurückzukehren Schein-Aus wenn Geräte nur vermeintlich ausgeschal- tet sind Aus zu den elektrischen Verbrauchern, die tatsächlich vollständig vom Netz getrennt sind. SMART METERING Versorgungsunternehmen müssen seit Anfang 2011 einen zeitvariablen Stromtarif anbieten. Um diesen Service nutzen zu können, ist die Installation von so genannten Smart-Metering-Geräten erforderlich. Sie sind bei Neu- installationen bzw. Sanierungen in größeren Wohn- gebäuden mittlerweile Pflicht, der einzelne Haushalt kann sich einen Smart Meter nachträglich einbauen lassen (ggf. kostenpflichtig). Von Nutzen ist das dann, wenn ein ENERGIESPAREN 9 Teil des Stromverbrauchs in Zeiten günstigerer Tarife verla- gert werden kann. Z. B. könnte eine Spülmaschine spät am Abend in Betrieb genommen werden, oder eine Wasch- maschine per Zeitvorwahl in den Nachtstunden waschen, so dass die Wäsche morgens aufgehängt werden kann. Voraussetzung ist allerdings, dass die Maschine leise genug arbeitet, damit im Mehrfamilienhaus niemand gestört wird. Für den Privathaushalt ist der Vorteil, dass er durch aktive Verlagerung der Gerätenutzung Kosten sparen kann. Für das Versorgungsunternehmen ist es günstig, wenn der Verbrauchsverlauf der versorgten Haushalte gleichmäßiger wird. SMART HOME Die nächste Generation von Wohnungen könnten viel- leicht so genannte Smart Homes sein. Hierbei sind speziell ausgerüstete „intelligente“ Geräte über einen Rechner vernetzt und per Internet auch von unterwegs durch die BewohnerInnen steuerbar. Andere Systeme vernetzen die Geräte über eine spezielle Basisstation zur Steuerung von zu Hause aus und bieten die Steuerung per Internet als Option an. Auf Wunsch kann mit dieser Art der Ansteuerung beispielsweise ein im Backofen zuvor angerichteter Auflauf schon gegart werden, solange Koch oder Köchin noch auf der Heimfahrt sind. Ebenfalls mög- lich sind Überwachungsfunktionen z. B. gegen Einbruch oder eine Kontrolle, ob das Bügeleisen vor Verlassen der Wohnung ausgeschaltet wurde. Voraussetzung für einen energieeffizienten Betrieb eines solchen Systems sind einerseits sehr geringe Stand-by-Verluste der geschalteten Geräte, andererseits ein Rechner mit sehr niedrigem Ver- brauch. Ansonsten wird der Komfort mit hohem Zusatz- stromverbrauch bezahlt. Zudem dürfen die erforderlichen technischen Komponenten nicht zu hohe Anschaffungs- kosten verursachen und die Bedienung muss einfach sein, sonst ist keine Akzeptanz zu erwarten. ENERGIEPOLITIKER SAGEN ... Primärenergie zum Energiegehalt des Rohstoffs, z. B. von Rohöl oder Rohgas Endenergie zum Energiegehalt des raffinierten Öls am Verbrauchsort, Transportverluste sind eingerechnet Nutzenergie zur gewünschten Energieform, zum Beispiel Raumwärme ENERGIESPAREN10 Helle Sparfreude Wer das Licht in gerade nicht genutzten Räumen ausschaltet, spart Energie. Aber es muss nicht dunkel in der Wohnung sein, damit weniger Strom für die Beleuchtung gebraucht wird. Auch Energiesparlampen und LED liefern heute angenehmes Licht, und das mit einem Bruchteil der Energie, die eine Glühlampe verbraucht. Daher rentiert sich der höhere Preis nach kurzer Zeit, zudem halten diese Lampen wesentlich länger. Etwa zehn Prozent des Stromver- brauchs in privaten Haushalten fällt auf die Beleuchtung, davon lässt sich durch effiziente Lampen die Hälfte bis drei Viertel ein sparen. Glühlampen werden heiß, sobald Strom durch sie fließt. Das zeigt, dass sie keineswegs nur Licht erzeugen. Der größte Teil der Energie wird in Wärme umgewandelt. HOHE KOSTEN, HOHER VERSCHLEISS Hinzu kommt ein weiterer Nachteil von Glühlampen: Sie gehen viel schneller kaputt als andere Lampen und müssen häufiger ersetzt werden. Das kostet Geld und ist mit Auf- wand verbunden. Eine Glühlampe fällt durchschnittlich nach 1.000 Stunden Betriebszeit aus. Die vier Alternativen, die heute ange- boten werden, halten alle länger durch. So tun Halogen- lampen zwischen 2.000 und 4.000 Stunden ihren Dienst, Energiesparlampen und andere Leuchtstofflampen halten 5.000 bis 20.000 Stunden durch, und Leuchtdioden (LEDs) versagen erst nach 25.000, 50.000 oder 100.000 Stunden. Energiesparlampen und LED können fast überall einge- setzt werden, wo bisher Glühlampen verwendet wurden. Sie werden mit zwei verschiedenen Schraubgewinden angeboten, der Fachbegriff lautet E27 bzw. E14, es gibt sie aber auch für andere Fassungen. Am besten nimmt man beim Kauf eine Lampe zum Vergleich mit. Jede Energie- sparlampe ersetzt in ihrer langen Nutzungsdauer mehrere Glühlampen. Sie spart dadurch über die Stromrechnung 70 bis 140 Euro, je nach Typus. Oder anders gerechnet: Bei einer täglichen Brenndauer von einer Stunde braucht eine Energiesparlampe mit 15 Watt im Jahr 5,5 kWh, das sind Betriebskosten von rund 1,60 Euro. Eine gleich helle Glühlampe mit 75 Watt verbraucht in dieser Zeit 27,5 kWh oder fast 8 Euro. Der Unterschied in den Anschaffungskos- ten ist schon nach einem Jahr ungefähr ausgeglichen. Alle Lampen tragen auf der Verpackung das EU-Label, in dem ihre Effizienzklasse angegeben wird. Gute Energie- sparlampen, LED und Leuchtstoffröhren erreichen die höchste Effizienzklasse A, Halogenleuchten die Klassen B bis D, Glühlampen nur Klasse E. Das EU-Label für eine effiziente Lampe mit Angabe des Stromverbrauchs während 1.000 Stunden Nutzung in Kilowattstunden (Quelle: Europäische Kommission und InitiativeEnergieEffizienz der Deutschen Energie-Agentur GmbH (dena)) A++ XXX kWh/1000h A++ A+ A B C D E Energieefzienz - klasse der Lampe Stromverbrauch in Kilowattstunden bei 1000 Stunden Nutzung ENERGIESPAREN 11 Glühlampen, manche Halogenlampen und sogar eini- ge Energiesparlampen sind aufgrund ihrer schlechten Lichtausbeute von einer Richtlinie der EU betroffen, die ineffiziente Leuchtmittel nach und nach aus dem Markt nimmt. Seit September 2012 sind Standardglühlampen nicht mehr am Markt erhältlich. 2013 wird die Produktion verspiegelter Glühlampen eingestellt, 2014 jene von ineffi- zienten Halogenlampen. TYPISCHE LICHTAUSBEUTEN PRO BEZOGENER ENERGIEEINHEIT (LUMEN PRO WATT) Glühlampe 12 Halogen-Lampe 25 Standard-LED 30 Gute LED 60 Hochleistungs-LED 80 bis 90 Laborwerte für hocheffiziente LED bis 250 Energiesparlampe 60 bis 90 Leuchtstofflampe ohne elektronisches Vorschaltgerät (EVG) 70 Leuchtstofflampe mit EVG 100 Künftig wird zunehmend die abgegebene Lichtmenge einer Lampe in der Einheit Lumen als Angabe auf der Lampenpackung stehen. Eine zu einer Glühlampe mit 100 Watt vergleichbare Energiesparlampe oder LED muss also rund 1.200 Lumen abgeben. Energiesparlampen (ESL) und LED gibt es in vielen unterschiedlichen Bauformen und mit unterschiedlicher Lichtfarbe, ständig kommen neue auf den Markt. Die Far- ben „extra warmweiß“ oder „warmweiß“ entsprechen am ehesten denen einer Glühlampe und sind im Wohnbereich eine gute Wahl. Die Farbe „neutralweiß“ oder „tageslicht- weiß“ eignet sich eher für Arbeitsbereiche. Gut sortierte Elektrofachhändler haben einige Lampen in Betrieb, so dass man sich von ihrem Licht einen Eindruck verschaffen kann. Der von manchen Kritikern bemängelte Blaulichtan- teil von ESLs liegt laut Messungen von Stiftung Warentest bei den warmweißen Typen niedriger als der von Glüh- lampen. Qualitäts-ESLs halten länger und zeigen ein besseres, also schnelleres Anlaufverhalten als Billigangebote. Leuchtstofflampen werden hauptsächlich in Büros und Werkstätten eingesetzt, wo besonders helles Licht ge- braucht wird. Sehr empfehlenswert sind wegen flacker- freiem Licht und längerer Lebensdauer elektronische Vorschaltgeräte. Halogenlampen sind weiterentwickelte Glühlampen und halten länger als diese. Sie sind weniger effizient als Energiesparlampen, wie die Tabelle zeigt. Halogenlampen mit Infrarot-Beschichtung (IRC) nutzen den Strom besser aus, evtl. kann statt einer 50-Watt-Lampe eine mit 35 Watt installiert werden. Niedervolt-Halogenlampen brauchen ei- ne Versorgungsspannung von 12 oder 24 Volt und werden deshalb über einen Transformator (Trafo) an das Netz an- geschlossen. Wichtig ist, dass der Netzschalter auch diesen Transformator vom Netz trennt. Sonst fließt ständig ein geringer Strom. Auch für manche der speziellen Fassungen von Halogenlam- pen gibt es Energiesparlampen oder LED als Ersatz. LED (Light Emitting Diode) machen derzeit eine rasante technische Entwicklung. Sie haben durch die kleine Bau- form viele Einsatzmöglichkeiten. Einzelne Dioden kom- men im Labor bereits auf eine hervorragende Lichtaus- beute von bis zu 250 Lumen pro Watt. Es ist nur eine Frage der Zeit, bis diese Lampen zu bezahlbaren Preisen auf den Markt kommen. Auch hier ist es wichtig, im Wohnbereich eine warmweiße Lampe einzusetzen. Links eine Reihe von Energiesparlampentypen und rechts einige LED-Lampen ENERGIESPAREN12 BESONDERHEITEN VON ENERGIESPARLAMPEN UND LED Häufiges Ein- und Ausschalten ist bei Markenfabrika- ten kein Problem mehr, bei Billigprodukten allerdings schon. Gute Fabrikate werden durch eine Vorheizfunk- tion geschützt. Die Stiftung Warentest empfiehlt, zwischen Aus- und Einschalten zwei Minuten Zeit zu lassen, da die Elektronik das Schalten in warmem Zustand nicht gut verträgt. Entsorgung als Sondermüll: Energiesparlampen enthalten eine geringe Menge Quecksilber. Sie gehören deshalb keinesfalls in den Hausmüll. Die Hersteller sind verpflichtet, ausgediente Lampen zurückzunehmen; außerdem können sie bei kommunalen Sammelstellen und vielfach auch im Handel abgegeben werden. Auch defekte LED sind als Elektronikschrott über Sammel- stellen zu entsorgen! Zerbrochene Energiesparlampen sollen z. B. mit 2 Kartons wie mit einer Kehrschaufel aufgenommen und in ein verschließbares Gefäß gegeben werden, mitsamt den Kartons – Splitter mit einem feuchten Papiertuch auftupfen und dazu packen. Keinesfalls den Staubsauger verwenden. Gut lüften. Entsorgung über Schadstoffsammelstelle. In manchen ESLs ist das Quecksilber in ausgeschalte- tem Zustand in Form von Amalgam gebunden. Zerbricht die Lampe dann, wird kein flüssiges oder dampfförmiges Quecksilber frei. Manche Lampen haben als äußere Hülle einen Kunststoffmantel und sind so gegen das Zerbrechen geschützt. Übrigens: Die in den ESLs enthaltene Menge an Queck- silber ist geringer als jene, die durch den Betrieb gleich heller Glühlampen bei der Stromerzeugung emittiert wird. Dimmer: Die Helligkeit von normalen Energiespar- lampen lässt sich nicht mit einem Dimmer verstellen. Es gibt allerdings etwas teurere Modelle, bei denen das möglich ist. Auch für LED gilt: Nicht jede kann gedimmt werden und es muss ein passender Dimmer verwendet werden. Neutralweiß eignet sich für Akzentbeleuchtung oder für den Arbeitsplatz. Strahler sind für gezielte Beleuchtung ge- eignet, Lampentypen mit Rundum-Abstrahlung für die All- gemeinbeleuchtung. Inzwischen gibt es diese Leuchtmittel auch zu günstigen Preisen, etwa im Internet, im Baumarkt oder gar in Supermärkten. NICHT NUR DIE LAMPE MACHT DAS LICHT Beim Kauf sollte man darauf achten, dass Lampe und Leuchte zusammenpassen. Auch mit der Auswahl der rich- tigen Leuchte lässt sich Energie sparen. Etwa ein Drittel des Lichts darf den Raum indirekt beleuchten, das ist an- genehmer. Reflektoren und Glaskörper sollten sauber sein, sonst wirkt selbst eine gute Lampe matt. LICHT, WO LICHT GEBRAUCHT WIRD Küchen und andere Arbeitsräume brauchen wesentlich helleres Licht als Flure und Toiletten, darauf sollten die Leuchten und die Helligkeit der Lampen abgestimmt sein. Ein entscheidender Beitrag zum Energiesparen ist es aber, Licht nur dort brennen zu lassen, wo es gebraucht wird. Schon wenige Lampen, geschickt über die Wohnung ver- teilt, können eine behagliche Atmosphäre erzeugen. In Hausfluren, auf Gartenwegen und in Kellerräumen kann auch die Technik beim Stromsparen helfen. Zeitschaltuh- ren, Bewegungsmelder und Dämmerungsschalter sorgen automatisch dafür, dass nirgendwo unnütz Licht brennt. ENERGIESPARTIPPS • In allen häufig genutzten Leuchten Energiesparlampen oder LED verwenden • Licht aus bei Abwesenheit (Ausnahme: per Zeitschalt- uhr geschaltete Lampe während des Urlaubs als Einbruchschutz) • Allgemeinbeleuchtung sparsam, helles Licht gezielt am Ort der Sehaufgaben • Helligkeit der Nutzung anpassen • Bewegungsmelder und Dämmerungsschalter für Außenbeleuchtung • Bei Halogenlampen zumindest IRC-Typen wählen, wenn kein Austausch durch Energiesparlampen oder LED möglich BETRIEBSKOSTENVERGLEICH VERSCHIEDENER WASCHMASCHINENTYPEN Frontlader Toplader Beladung 5 – 5,5 kg 6 – 6,5 kg 7 – 8 kg 5 – 7 kg Strom- ver- brauch in kWh pro Jahr Wasser- ver- brauch in Litern pro Jahr Strom- und Was- serkos- ten in 11 Jahren in Euro Strom- ver- brauch in kWh pro Jahr Wasser- ver- brauch in Litern pro Jahr Strom- und Was- serkos- ten in 11 Jahren in Euro Strom- ver- brauch in kWh pro Jahr Wasser- ver- brauch in Litern pro Jahr Strom- und Was- serkos- ten in 11 Jahren in Euro Strom- ver- brauch in kWh pro Jahr Wasser- ver- brauch in Litern pro Jahr Strom- und Was- serkos- ten in 11 Jahren in Euro sparsame Geräte 137 7.260 749 150 7.899 818 137 8.140 788 99 7.490 640 mittlerer Verbrauch 170 8.471 906 187 9.633 1.010 185 10.167 1.027 180 9.113 965 hoher Ver- brauch 199 10.450 1.084 220 12.540 1.241 304 13.800 1.560 240 12.400 1.298 Gerechnet mit Daten aus der Geräteliste des NEI Detmold 2012/13, jedoch mit 28,5 ct pro kWh Strom und 4 Euro pro cbm Wasser. ENERGIESPAREN 13 Waschen im Schongang Waschmaschinen sind Großgeräte, die relativ viel Energie brauchen und lange halten. Sie laufen bis zu 18 Jahre, im Schnitt etwa elf Jahre. Neue Geräte brauchen deutlich weniger Energie und Wasser als ältere. Wie hoch Energiebedarf und Betriebskosten ausfallen, hängt gerade bei diesem Gerät sehr von der Nutzung ab. ENERGIE WOFÜR? Eine Waschmaschine braucht einen kleinen Anteil der ein- gesetzten Energie (je nach Waschprogramm zehn bis zwan- zig Prozent) für die Regelung und um die Wäschetrommel zu drehen; der Hauptteil dient zum Aufheizen der Wasch- lauge. Der Energiebedarf für einen Waschgang steigt mit der Wassermenge und der Waschtemperatur. Wie viel Wasser ein Waschgang benötigt, hängt von der Maschine ab, aber auch von der Wahl des Waschpro- gramms. Früher flossen in einem 60 °C-Standard-Programm mehr als hundert Liter Wasser durch die Maschine. Heute sind es bei den sparsamsten Geräten 40 bis 55 Liter für fünf, sechs oder gar sieben Kilogramm Wäsche. Das wurde möglich, weil die Wäsche heute gewissermaßen „geduscht“ und nicht mehr „gebadet“ wird. Geringer Wasserverbrauch ist allerdings nicht für alle gut. Wer empfindliche Haut hat oder unter Allergien leidet, sollte besonders auf die Spülwirkung achten. Manche Maschinen bieten wahlweise einen Zusatzspülgang an. Niedrige Waschtemperaturen sparen viel Energie. Bei reinem Kaltwasseranschluss braucht eine 60-Grad-Bunt- wäsche ungefähr dreimal soviel Strom wie eine 30-Grad- Wäsche, bei 90-Grad ist der Stromverbrauch sogar fünfmal so hoch. Moderne Waschmaschinen erzielen mit heutigen Waschmitteln in 40-Grad-Programmen Waschergebnisse, die 15 Jahre alte Geräte nur bei 60 °C mit entsprechend höherem Energie- und Wassereinsatz erreichen. Ein Warmwasseranschluss für die Waschmaschine spart Strom und zusätzlich das Treibhausgas Kohlendioxid, sofern das warme Wasser nicht elektrisch geheizt wird, sondern z. B. aus Sonnenkollektoren, einer modernen Gas- oder Ölheizung oder einem Fernwärmenetz kommt. Zudem darf zu Beginn nicht zu viel kaltes Wasser einlau- fen (Faustregel: nach zwei Litern sollte warmes Wasser kommen). Für vorhandene Maschinen gibt es Nachrüstge- räte, die zwischen Warm- und Kaltwasserhahn und Maschi- ne geschraubt werden. Neue Maschinen mit Warmwasser- anschlussmöglichkeit sind am Markt verfügbar. BEWERTUNGSSYSTEM FÜR WASCHMASCHINEN Die Energieeffizienzklassen für Waschmaschinen basieren beim derzeit geltenden EU-Label auf dem Energiebedarf ENERGIESPAREN14 für einen angenommenen Mix von Waschprogrammen bei 220 Waschgängen pro Jahr. Angaben zu älteren Geräten beziehen sich auf einen Kochwaschgang oder eine 60 °C- Wäsche. In die Berechnung der Energieeffizienzklassen gehen die verschiedenen Waschprogramme nach Messvorschrift der EU ein. Ein Gerät mit Label A+ verbraucht im Mittel 13 % weniger als eines mit Label A, ein Gerät mit A++ im Mittel 24 % weniger als mit Label A, ein Gerät mit A+++ im Mittel 32 % weniger als mit Label A. Die neuen Energieeffizienzklassen A+, A++ und A+++ beschreiben nun die sparsamen Geräte. A-Geräte sind heute als ineffizient anzusehen, Geräte mit Effizienzklasse A+++ am Markt erhältlich (Sommer 2013). Bei Waschmaschinen wird zudem die Schleuderwirkung mit den Effizienzklassen A bis G bewertet; ein energetisch gutes Gerät mit hoher Schleuderleistung hat also die Klassifizie- rung A+++A. Die Effizienzklasse für das Schleudern wird über die Restfeuchte nach dem 60 °C-Baumwoll-Wasch- programm festgelegt. Geringe Restfeuchte reduziert den Energiebedarf von Wäschetrocknern; Schleudern braucht zur Reduzierung hoher Feuchtigkeit um den Faktor 100 weniger Energie als ein Trockner. Mit dem neuen EU-Label entfällt die Klassifizierung der Reinigungswirkung, da für alle Geräte eine Mindestwaschwirkung vorgeschrieben wird. Neu hinzu kommt eine Information über die Geräu- schentwicklung beim Waschen und beim Schleudern. FASSUNGSVERMÖGEN UND BELADUNG DER WASCHMASCHINE; WASCHPROGRAMME Wer eine Waschmaschine nur zum Teil füllt, erhöht die Zahl der Waschgänge und damit Strom und Wasserverbrauch. Eine Mengenautomatik kann zwar den Wasser- und Stromeinsatz bei geringer Beladung reduzieren, aber nur zum Teil anglei- chen. Für kleine Haushalte ist eine Maschine mit 5 kg Fas- sungsvermögen sinnvoll, auch wenn dann der Verbrauch pro kg Wäsche höher als bei 7-kg-Maschinen liegt. Auch wenn große Maschinen eine Mengenautomatik haben, ist doch der Verbrauch pro Kilogramm Wäsche bei Teilbeladung höher. Das Marktangebot an Geräten der Klassen A+++ und A++ ist bei großen Maschinen breiter als bei kleinen. Die gute Klas- sifizierung lässt sich hier leichter erreichen. Manche dieser Geräte erreichen bei einer 60 °C Wäsche nur 45 oder 50 °C Wassertemperatur – fragen Sie im Handel kritisch nach. Die AUSWAHLGESICHTSPUNKTE BEI NEUKAUF • Gute Spülwirkung (Testergebnisse); ggf. zuschaltbarer Spülgang • Niedriger Wasserbedarf im Standardprogramm • Bei Trockner-Einsatz: mindestens Schleuderwirkungs- klasse B, besser A • Energieeffizienzklasse A+++ oder A++. Vergleichen Sie den Jahresenergiebedarf auch für 30 °C- und 40 °C-Wäschen • 60 °C Wassertemperatur bei 60 °C Waschgang • Ggf. Mengenautomatik, Mischprogramm; Spezial- programme für Wolle und Seide, Sportkleidung und anderes, Zeitvorwahl • Für 1 – 2-Personen-Haushalte reicht ein 5 kg-Gerät • Gerät mit Warmwasseranschluss wählen, wenn das Wasser im Haushalt nicht-elektrisch erwärmt wird • Toplader oder Frontlader? Gut ablesbare Anzeigen; Drehschalter und Tasten leicht und sicher zu bedienen • Leise im Betrieb • Sicherheit gegen Wasseraustritt über gesamte Lebensdauer des Gerätes; Langlebigkeit; Service- qualität (siehe Berichte der Stiftung Warentest) ENERGIESPARTIPPS • Möglichst niedrige Waschtemperatur; bei gering verschmutzter Wäsche reichen oft 30 °C • Fassungsvermögen der Waschmaschine möglichst gut ausnützen. Zur Kontrolle einmal mit und einmal ohne einen Korb mit einer Maschinenfüllung trockener Wäsche auf die Personenwaage stellen • Auf Vorwaschgang verzichten • Möglichst wenige Schonwaschgänge wegen geringer Beladung und erhöhtem Wasserstand • Geräte mit Zeitvorwahl oder mit Uhr benötigen ganz- jährig einige Watt Leistung; sie sollten vollständig abschaltbar sein oder per schaltbarem Stecker vom Netz getrennt werden Laufzeit der Waschprogramme beträgt zum Teil 3 Stunden. Effiziente Geräte mit 5 kg Fassungsvermögen finden sich am ehesten bei den Topladern. Spezialprogramme sehen oft nur eine Teilbeladung der Waschmaschine und manchmal einen höheren Wasserver- brauch vor. Trotzdem sind einige wichtig, z. B. für Wolle und Seide. ENERGIESPAREN 15 Wäscheleine am Stromzähler Elektrische Wäschetrockner sind Strom-Großverbraucher. Gut dran ist, wer seine Wäsche kostenlos draußen oder im ungeheizten Trockenraum auf der Leine trocknen lassen kann. Wer einen Wäschetrockner braucht, hat die Wahl zwischen mehreren Typen mit deutlich unterschiedlichem Energiebedarf. Wäschetrockner sind separate Geräte zum Trocknen der Wäsche, während Waschtrockner Waschmaschine und Trockner platzsparend in einem Gerät vereinen. Sehr ver- breitet sind elektrisch beheizte Trommel-Wäschetrockner; es gibt aber auch gasbeheizte Geräte. Trockenschränke, in denen die Wäsche im Kaltluftstrom hängend trocknet, sind in Deutschland kaum bekannt. Unter Trommel- Wäschetrocknern gibt es zwei Grundtypen: Ablufttrockner saugen Umgebungsluft an und führen sie erwärmt durch die Wäsche, wo sie Feuchtigkeit aufnimmt; anschließend pusten sie die feuchte Warmluft nach außen. Sie benötigen einen gut durchlüfteten Raum und eine Abluftleitung nach draußen, damit nicht feuchte, sondern einigermaßen trockene Luft angesaugt wird und keine Feuchteschäden an der Bausubstanz entstehen. Gas- beheizte Ablufttrockner haben einen um etwa die Hälfte niedrigeren Primärenergieverbrauch als elektrisch beheizte. Kondensationstrockner benötigen nur einen Stroman- schluss. Feuchte warme Luft wird hier in einem Teil des Geräts abgekühlt, wobei die Feuchtigkeit kondensiert und in einem Behälter gesammelt oder gleich ins Abwasser geleitet wird. Die so getrocknete und gekühlte Geräteluft wird erneut erwärmt und durch die Wäsche geleitet. Zum Kühlen verwenden sie meist Raumluft, die über einen Wärmetauscher die Trocknerwarmluft abkühlt und diese erwärmt wieder in den Raum abgibt. Das heizt die Trock- nerumgebung. Alternativ gibt es auch Wasserkühlungen. Bauartbedingt benötigen diese Geräte für die gleiche Wir- kung 5 bis 10 Prozent mehr Energie als Ablufttrockner. Im Kondensationstrockner mit integrierter Wärme- pumpe entzieht ein Kältemittel in einem geschlossenen Kreislauf der feuchtwarmen Trocknerluft Wärme und heizt mit dieser Wärme die gekühlte und getrocknete Geräteluft wieder auf – und nicht die Umgebung. Dieses „Wärme-Re- cycling“ senkt den Strombedarf um 40 bis 50 Prozent. ENERGIEBEDARF UND ENERGIEEFFIZIENZKLASSEN FÜR WÄSCHETROCKNER Damit man Geräte vergleichen kann, wird auf dem EU- Label einheitlich der Energiebedarf für das Standardpro- gramm „Baumwolle schranktrocken“ bei voller Beladung des Geräts mit normierten Wäschestücken bestimmter Feuchte angegeben. Zu beachten ist, dass für die Mes- sung für das EU-Label ein Schleudern der Wäsche mit 800 Umdrehungen pro Minute festgelegt ist und heutige Herstellerangaben sich häufig auf 1000 U / min oder mehr beziehen! Gründlich schleudern hilft sehr beim Sparen: Es braucht 100 Mal so viel Energie, Feuchtigkeit durch Wärme zu ent- ziehen als durch Schleudern! SCHLEUDERWIRKUNG VON WASCHMASCHINEN Schleuderwirkungs- klasse A B C ... G Restfeuchte in % < 45 45 – 54 54 – 63 > 90 erreichbar mit Schleu dertouren [U / min] meist ab 1.500 1.200 bis 1.450 1.000 bis 1.200 Anmerkung: Große Waschmaschinen erreichen aufgrund des höheren Trommeldurchmessers mit weniger Schleuder- touren eine niedrigere Restfeuchte als kleinere, daher ist die Restfeuchte der wichtige Kennwert Kondensationstrockner mit Wärmepumpe erfüllen die Bedingungen für Klasse A, außerdem mit Kaltluft arbei- tende Trockenschränke. Gastrockner fallen nicht unter die EU-Richtlinie und tragen darum kein Energieetikett. Ihre Energieeffizienz wäre ebenfalls mit „A“ zu bewerten. Abluft- und Kondensationstrockner ohne Wärmepumpe fallen in Labelklasse B und C. Die neuen Labelklassen A+, A++ und A+++ gelten seit 2012 auch für Wäschetrockner, die schlechtesten Klassen sind entfallen. Waschtrockner sind weniger effizient; außerdem können sie in einem Trockengang stets nur mit der halben Menge aus dem Waschgang befüllt werden. ENERGIESPAREN16 Der preiswerteste Wäschetrockner BETRIEBSKOSTEN Für die Stromkostenberechnung werden zwei Trockner- läufe pro Woche angenommen. Das ergibt in 15 Jahren 1.560 Durchläufe und entspricht etwa der von der Stiftung Warentest geforderten Lebensdauer von 1.600 Trocknungs- durchläufen. Beim nachfolgenden Vergleich ist zu beach- ten, dass für Geräte mit 5 und mit 6 kg Fassungsvermögen gerechnet wurde. ENERGIEBEDARF UND STROMKOSTEN VON WÄSCHETROCKNERN Energieeffizienz- klasse und Art des Wäschetrockners (1) Energiebedarf je Trockengang nach Schleudern mit 1.000 I 1.400 Umdreh. / Minute (2) Stromkosten pro Jahr bei 2 Trockengängen je Woche (3) kWh Euro A+-Gerät 6 kg (K, WP) 1,7 1,42 43 A-Gerät 6 kg (K, WP) 1,8 1,55 46 B-Gerät 6 kg (K) 3,3 2,85 85 C-Gerät 6 kg (K) 4,3 3,7 111 C-Gerät 6 kg (A) 3,2 2,75 82 Gastrockner 5 kg (A) Gas Strom 3,25 0,30 gesamt 31 22 9 (1) Angaben in Klammern: K: Kondensationstrockner, WP: Wärmepumpe, A: Ablufttrockner; (2) für Baumwollwäsche; (3) berechnet nach Schleudern mit 1.400 Umdreh. / Minute; Strom 28,8 ct / kWh, Gas: 6,4 ct / kWh (gerundet) Eine Wärmepumpe verteuert den Kondensationstrockner. Durch die Stromeinsparung während der Nutzungsdauer wird diese Mehrausgabe ausgeglichen. Das Fassungsvermögen eines Wäschetrockners sollte mög- lichst gut ausgenutzt werden. Das gilt auch für Trockner mit Feuchtesteuerung, obwohl diese Geräte besonders effizient arbeiten. Sie schalten automatisch ab, wenn die Wäsche trocken ist, statt pauschal über eine voreingestellte Zeit zu trocknen. Solch einen Trockner kann man gele- gentlich auch laufen lassen, wenn er nicht ganz voll ist. Da- her kann es unter Energiespargesichtspunkten von Vorteil sein, ein etwas größeres effizienteres Gerät (6 kg) einem kleineren ineffizienteren (5 kg) vorzuziehen. AUSWAHLGESICHTSPUNKTE BEI NEUKAUF • Bevorzugt Gerät mit Wärmepumpe oder Gasbetrieb wählen • Kondensationstrockner für Wohnung besser geeignet als Abluftgerät • Feuchtesteuerung hat mehrere Vorteile gegenüber Zeitsteuerung • Fassungsvermögen passend zur Waschmaschine • Aufstellmöglichkeiten (unten / oben) für das Gerät, Bedienelemente, Ablesbarkeit; Lautstärke • Flusensieb leicht zu reinigen? Bei Kondensations- trocknern: Kondensat einfach zu entfernen? • Spezialprogramme entsprechend Ihren Bedürfnissen (Wolle etc.) ENERGIESPARTIPPS • Wenn möglich, Wäsche im Freien oder einem unbe- heizten Trockenraum aufhängen (wegen der Feuchtig- keitsabgabe lieber nicht in der beheizten Wohnung) • „Trocknerwäsche“ möglichst mit 1.200 bis 1.400 Um- drehungen pro Minute schleudern • Immer möglichst gleichartige Gewebe zusammen trocknen • Gerät voll beladen, ohne zu überladen, sonst knittert Wäsche vermehrt • Wäsche nicht „übertrocknen“ (Geräte mit Feuchte- fühler vermeiden das automatisch) • Das Gerät sollte komplett ausgeschaltet werden können (kein Stand-by) • Flusensieb und Wärmetauscher regelmäßig reinigen ENERGIESPAREN 17 Eiskalt kalkuliert Kühl- und Gefriergeräte müssen rund um die Uhr arbeiten; die Kühlaggregate laufen mehrere Stunden täglich. In den letzten Jahren wurde die Energieeffizienz neuer Kältegeräte ganz erheblich verbessert: die besten Energiesparer benötigen heute nur noch halb so viel Strom wie die besten Geräte vor zehn Jahren. JAHRESENERGIEBEDARF UND ENERGIEEFFIZIENZKLASSEN Auf dem EU-Etikett für Kühl- und Gefriergeräte wird der unter normierten Bedingungen ermittelte Jahresenergiebe- darf in kWh angegeben. Wie hoch der Wert für ein Gerät ist, verrät die Energieeffizienzklasse von A+++ (sehr gering) über A++, A+ und A bis hin zu D (sehr hoch). Ein Gerät mit Label A+++ benötigt nur 40 Prozent der Energie eines vergleichbaren Geräts, das gerade noch zur Klasse A gehört und unter einem Fünftel eines alten D-Geräts. A-Geräte gehören mittlerweile zu den energetisch schlech- teren, seit Mitte 2012 dürfen sie nicht mehr in den Handel gelangen. WAS BEDEUTET STROMEFFIZIENZ FÜR DEN GELDBEUTEL? Haushaltsübliche A++ -Kühl- und Gefriergeräte brauchen jährlich rund 100 kWh Strom weniger als ähnlich große A-Geräte (s. Tabelle) und sparen damit 28,5 Euro pro Jahr an Stromkosten. Höhere Anschaffungskosten von spar- samen Geräten kommen durch die eingesparten Strom- kosten wieder herein, ohne dass Strompreissteigerungen eingerechnet werden. TISCH-KÜHLSCHRÄNKE MIT * / ***-FACH MIT CA. 116 L VOLUMEN KÜHLRAUM UND 16 L GEFRIERFACH A+++- Gerät A++- Gerät A+- Gerät A- Gerät Strombedarf pro Jahr [kWh] 82 124 157 220 Strombedarf in 15 Jahren [kWh] 1.240 1.860 2.355 3.300 Stromkosten in 15 Jahren [Euro] 353 530 671 940 Einsparung A+++-Gerät gegen andere Geräte in 15 Jahren [Euro] 177 318 587 AUSWAHLGESICHTSPUNKTE BEI NEUKAUF • Für einen Ein-Personen-Haushalt reicht ein Kühlschrank mit ca. 100 – 140 l Volumen aus • Ein großer Kühlschrank ist energetisch günstiger als zwei kleine • Fragen Sie nach A+++ - oder mindestens A++-Geräten. Vergleichen Sie den Jahresenergiebedarf • Wenn Sie selten etwas einfrieren und nur wenig Tiefkühlkost lagern, ist ein Kühlschrank mit Gefrierfach (* / ***) zu empfehlen, für großes Tiefkühlvolumen eine Truhe möglichst mit Aufstellort Keller • Wenn Sie vorhandene Gefriergeräte aufgeben wollen, sollten Sie ein Gerät mit Gefrierfach oder eine Kühl-Ge- frier-Kombination kaufen. Sonst reicht ein Kühlschrank ohne Gefrierfach zusammen mit einem Gefriergerät • Wünschenswert sind: getrennter Regler für Kühl- und Gefrierteil, Temperaturskala für die Einstellung, außen ablesbare Temperaturskala, Warnsignale bei offen stehender Tür oder Überschreiten der vorge- sehenen Temperatur im Innenraum, Türschließ- automatik, Urlaubsschaltung • Eine Abtauautomatik verursacht etwas mehr Energie- verbrauch, ist aber komfortabel. Eine No-Frost-Funktion hilft gegen Vereisen des Gefrierfachs bei häufigem Öffnen, erhöht aber ebenfalls den Strombedarf • Je besser ein Gefriergerät wärmegedämmt ist, desto länger hält es die Lebensmittel auch bei Stromausfall kalt. Manche Geräte verfügen über Kühlakkus als Kältespeicher • Standgeräte sind häufig sparsamer als Einbaugeräte. Maximaler Energiebedarf in den Energieeffizienzklassen in Prozent des Bezugswertes A++ < 33 % A+++ < 22 % A+ < 44% A < 55 % B < 75 % C < 95 % D < 110 % ENERGIESPAREN18 Auch wenn der Stromverbrauch im praktischen Alltag etwas anders aussehen kann als der in der Tabelle angege- bene Jahresenergieverbrauch, erlaubt dies gute Vergleiche. Am Markt sind zahlreiche A+++ und A++ -Geräte verfüg- bar. Dabei ist die Auswahl unter Tisch- und Standgeräten größer als unter Einbaugeräten; letztere sind erheblich teurer. Die Anschaffungskosten hängen mehr von anderen Ausstattungsmerkmalen ab als von der Energieeffizienz. Ein großer Kühlschrank spart Strom im Vergleich zu zwei kleinen mit dem gleichen Fassungsvermögen. Trotzdem benötigt ein zu großes Gerät mit leerstehendem Kühl- oder Gefrierraum unnötig Energie. Gefriertruhen sind bei gleichem Nutzvolumen sparsamer als Gefrierschränke (vergleiche Werte in der Tabelle). Kühl-Gefrierkombinationen der Klasse A++ schneiden unter Normbedingungen energetisch teilweise besser ab als eine Kombination aus A++ -Kühlschrank ohne *-Fach und kleinem A++ -Gefrierschrank. Bei einer Neuanschaf- fung sollte man aber immer die Werte der konkreten Geräte vergleichen. STANDORTEINFLUSS, NUTZERVERHALTEN Kühlschränke und Kühl-Gefrierkombinationen sollten kühl stehen, also nicht neben der Heizung oder dem Herd oder in der Sonne, sondern am besten in einem wenig beheizten Raum. Ein Grad weniger Umgebungstemperatur spart bei Kühlschränken etwa sechs Prozent und bei Gefriergeräten drei Prozent an Strom. Allerdings ist zu ENERGIESPARTIPPS • Herstellerhinweise zur Aufstellung beachten • Bei Standgeräten alle zwei Jahre das Kühlgitter auf der Rückseite entstauben • Warme Speisen abkühlen, ehe sie in den Kühlschrank kommen • Türen von Kühl- oder Gefrierschrank immer nur kurz und möglichst selten öffnen. Ab und zu kontrollieren, ob die Dichtung der Tür sauber und in Ordnung ist • Innenraumtemperatur des Kühlschranks mit Thermo- meter kontrollieren. 7 °C reichen aus und benötigen weniger Strom als 5 °C. Im Gefrierfach sind minus 18 °C optimal • Geräte ohne Abtauautomatik abtauen, sobald eine deutliche Eisschicht entstanden ist • Bei längerer Abwesenheit Kühlschrank vom Netz trennen (abtauen, Tür offen lassen) ENERGIEBEDARF FÜR VERSCHIEDENE KÜHL- UND GEFRIERGERÄTE (DATEN IM HANDEL BEFINDLICHER GERÄTE) Gerätetyp Nutzvolumen in Liter für Jahresstromverbrauch in kWh Kühlen Gefrieren A+++-Geräte A++-Geräte A-Geräte Kühlschrank ohne *-Fach 140 – 155 – 64 85 – 95 150 (B-Gerät: 208) 181 – 228 – 71 94 – 104 160 Kühlschrank mit * / ***-Fach 100 – 116 16 – 18 93 – 95 110 – 140 204 – 245 (Gefrierfach) 200 – 222 22 – 26 153 – 180 263 Kühl-Gefrierkombination 190 – 250 65 – 120 132 – 170 204 – 270 327 – 342 Gefriertruhe – – 150 – 170 200 – 300 117 – 169 132 180 – 219 178 223 Gefrierschrank (Standgeräte) – – 92 – 104 200 – 300 101 146 – 193 132 – 152 194 – 264 204 – 215 280 Geräte der Effizienzklasse A+++ sind im Sommer 2013 für viele Gerätetypen am Markt zu finden. beachten, dass die Geräte für bestimmte Umgebungstempe- raturen gebaut sind: Klimaklasse SN für 10 – 32 °C, N für 16 – 32 °C (normal in Deutschland), ST für 18 – 38 °C. Außerhalb ihres Bereichs arbeiten die Geräte nicht optimal. Die Luft sollte am äußeren Wärmetauscher gut zirkulieren können. Einbaugeräte brauchen Lüftungsschlitze; Stand- kühlschränke Abstand zur Wand. Bei Gefriertruhen ist der Wärmetauscher oft in die Außenwände integriert; deshalb sollten sie frei stehen. ENERGIESPAREN 19 Sparsame Spülhelfer Der Abwasch von Hand ist für viele eine lästige Pflicht und wird gerne abgegeben. Wer sich die Anschaffung einer Geschirrspülmaschine überlegt, findet seit einiger Zeit in Testberichten ökologische Argumente dafür: Demnach verwen- den moderne elektrische Geschirrspüler Energie und Wasser sparsamer, als das im Handabwasch möglich ist. ARBEITSWEISE UND ENERGIEBEDARF Die Reinigungswirkung von Geschirrspülmaschinen be- ruht auf einer Kombination von Einweichen mit Wasser, chemischer Einwirkung des Geschirrspülmittels und etwas mechanischer Reinigung durch das Besprühen. Energie wird vor allem zum Aufheizen des Wassers und zum Trocknen benötigt. Deshalb brauchen Geschirrspüler mit Warmwasseranschluss deutlich weniger elektrischen Strom als Geräte mit Kaltwasseranschluss; das Wasser wird dann überwiegend durch einen anderen Energieträger erwärmt. Ansonsten hängt der Strombedarf für einen Spülvorgang davon ab, wie viel Wasser verwendet wird und bis zu wel- cher Temperatur dieses aufgeheizt wird. Technische Verbesserungen haben den Wasserbedarf neuer Spülmaschinen auf 7 Liter pro Spülgang (Gerät mit 13 Maßgedecken) reduziert und auch deren Strombedarf auf etwa ¾ Kilowattstunden pro Spülgang erheblich verrin- gert. Der niedrige Wasserverbrauch wird erreicht, indem das letzte Spülwasser des vorhergehenden Spülprogramms gespeichert und zum Vorreinigen des nachfolgenden Spül- ganges verwendet wird. Die Sparprogramme der Geräte nutzen aus, dass durch län- gere Reinigungsdauer bei niedrigerer Temperatur mit weni- ger Energieeinsatz gleich gute Ergebnisse erreicht werden können wie bei kürzerer Programmdauer mit höherer Tem- peratur. Meist gibt es eine Vielzahl von Programmen für verschiedene Verschmutzungsgrade, die sich durch Tempe- ratur (40 – 70 °C) und Laufzeit (ca. 30 – 120 Minuten) und auch Energiebedarf unterscheiden. Eine Automatik, die den Verschmutzungsgrad des Ge- schirrs am Spülwasser erkennt, sorgt bei vielen neuen Geräten für einen optimierten Programmablauf. Manche Geräte verwenden das Mineral Zeolith, um eine besonders gute Trocknungswirkung zu erreichen. Die Feuchtigkeit wird beim Trockengang im Zeolith eingela- gert, das Mineral gibt hierbei Wärme ab, und durch die Erwärmung beim nächsten Spülgang wird das Wasser wieder in den Spülgang eingespeist. GERÄTETYPEN Fast alle Geschirrspüler sind Frontlader; nur einige Kleinst- geräte werden von oben befüllt. Viele Spülmaschinen, auch ältere Modelle, können direkt an die Warmwasserleitung angeschlossen werden. Sinnvoll ist dies dann, wenn das warme Wasser mit Sonnenkollektoren, einer modernen Gas-, Öl- oder Holzheizung oder per Fern- wärme bereitet wird und an der Anschlussstelle ohne langen kalten Vorlauf aus der Leitung kommt (Faustregel: maximal 2 Liter, 1 Liter bei den neuen Geräten mit sehr wenig Was- serverbrauch). Es gibt auch Spülmaschinen mit einem Abwasser-Wärme- tauscher, die mit Wärme aus dem Abwasser der Maschine neu zulaufendes Kaltwasser aufheizen. Bei ihnen ist ein Warmwasseranschluss nicht sinnvoll. Sie sind für Haushalte mit elektrischer Wassererwärmung eine gute Wahl. GERÄTEGRÖSSEN Der überwiegende Teil der Geräte ist ca. 60 cm breit und für 12 bis 14 Maßgedecke vorgesehen; unter Maßgedeck verstehen Fachleute eine bestimmte Sortierung von Sup- pen-, Speise- und Frühstückstellern, dazu Tassen mit Unter- tassen und Dessertschälchen. Die schmalen 45 cm breiten Geräte haben Fassungsvermögen von 7 bis 9 Maßgedecken Erstaunlich hohes Fassungs vermögen ENERGIESPAREN20 und sind speziell für kleine Haushalte geeignet. Manche Geräte für 9 Maßgedecke sind zwar 60 cm breit, aber nur 60 cm hoch und 50 cm tief. Sie können in höher liegende Schrankfächer eingebaut werden, so dass das Ein- und Aus- räumen leichter fällt. ANGABEN AUF DEM NEUEN EU-LABEL Geschirrspülmaschinen wurden früher auf dem EU-Etikett hinsichtlich Energieeffizienz, Reinigungswirkung und Trocknungswirkung bewertet. Ein in jeder Hinsicht gutes Gerät hat nach bisheriger Bezeichnung die Labelklasse AAA; im Lauf des Jahres 2011 wurde dies umgestellt, heute ist ein Gerät mit A+++ für die Energieeffizienz und A für die Trocknung ein sehr effizientes Gerät. Die Angabe zur Reinigungswirkung entfällt, da eine Mindestreinigungsqua- lität entsprechend der bisherigen Klasse A vorgeschrieben wird. Für die Energieeffizienzklassen ist festgelegt, wie viele Kilowattstun- den ein Gerät für einen Durch- lauf (bei Kaltwasseranschluss) in einem Spar- oder Ecoprogramm maximal brauchen darf. Die Ein- teilung hängt von der Gerätegröße ab; kleinere Geräte werden dabei „begünstigt“, was bedeutet, dass sie bei gleicher Effizienzklasse mehr Energie pro Maßgedeck benötigen dürfen als große Maschinen. Für kleine Haushalte kann dies den- noch die bessere Wahl sein, damit das Gerät immer voll gefüllt ist, wenn es in Betrieb genommen wird. Der Was- serbedarf je Maßgedeck ist bei kleinen Geräten allerdings höher. Mit Warmwasseranschluss brauchen gute neue Spülmaschinen ca. 40 Prozent weniger Strom als ohne. Zu den Energiekosten kommen noch die Wasserkosten hinzu, bei einem Neugerät mit 10 l pro Spülgang sind das rund 100 Euro in 15 Jahren (gerechnet mit 4 Euro / m3), bei einem älteren Gerät gut doppelt so viel. AUSWAHLGESICHTSPUNKTE BEI NEUKAUF • Aufstellungs- und Einbautyp; eventuell höheren Einbauort berücksichtigen • Warmwasseranschluss wählen, sofern zentrale Wassererwärmung nicht-elektrisch erfolgt • Fassungsvermögen und Größe entsprechend der Haushaltsgröße auswählen • Effizienzklassenkombination möglichst A+++A wählen, mindestens A++A, Wasserbedarf max. 10 l bei 60 cm breiten bzw. 11 l bei Geräten für 8 bis 9 Maßgedecke • Sparprogramm(e) • Garantie der Sicherheit gegen auslaufendes Wasser für gesamte Nutzungsdauer • Geringe Lautstärke (möglichst unter 45 dB) • Geringer Bedarf an Spültabs (auch im Intensiv- programm nur einer) • Gute Ablesbarkeit und Handhabung der Bedien- elemente; leichtes Einfüllen von Regeneriersalz und gegebenenfalls Klarspüler • Niedrige Leistung nach Programmende ENERGIESPARTIPPS • Falls noch nicht geschehen: Vom Kalt- auf den Warm- wasseranschluss umlegen lassen (außer bei Geräten mit Wärmetauscher) • Gerät möglichst voll beladen • Programme mit niedriger Temperatur wählen • Sparprogramme verwenden • Nicht von Hand vorspülen. Grobe Reste mit Papier entfernen (Biomüll) STROMBEDARF UND -KOSTEN FÜR SPÜLMASCHINEN VERSCHIEDENER ENERGIEEFFIZIENZKLASSEN Neugerät Klasse A+++ mit WWA Neugerät Klasse A+++ ohne WWA Neugerät Klasse A+ ohne WWA Altgerät Klasse D ohne WWA Strombedarf je Spülgang [kWh] 0,63 0,82 1,04 1,64 Strombedarf jährlich [kWh] 98 128 162 256 Strombedarf in 15 Jahren [kWh] 1.470 1.920 2.430 3.840 Stromkosten in 15 Jahren [Euro] 419 547 693 1.094 Annahme: 3 Spülgänge pro Woche, Gerät für 13 Gedecke; Berechnung mit Sparprogramm, WWA = Warmwasseranschluss z. B. über Sonnenkollektor STROM- UND WASSERBEDARF FÜR EINEN SPÜLGANG Sehr sparsame Geräte mit Kaltwasseranschluss Maß- gedecke Breite [cm] Strom [kWh] Wasser [Liter] Strom je Gedeck [kWh] 9 45 0,70 8 0,08 13 60 0,70 7 0,05 ENERGIESPAREN 21 STROM- UND WASSERBEDARF FÜR EINEN SPÜLGANG Sehr sparsame Geräte mit Kaltwasseranschluss Maß- gedecke Breite [cm] Strom [kWh] Wasser [Liter] Strom je Gedeck [kWh] 9 45 0,70 8 0,08 13 60 0,70 7 0,05 Den Deckel drauf halten Energie beim Kochen und Backen zu sparen bedeutet, die Energieverluste an die Umgebung so gering wie möglich zu halten und nicht mehr Material als nötig zu erhitzen – im Idealfall also nur die Nahrungsmittel. Großen Einfluss auf den Energiebedarf hat die Handhabung der Geräte. Zudem beeinflusst die Entscheidung zwischen Gas- und Elektro- System die CO 2 -Bilanz. VIELE MÖGLICHE VARIANTEN Das Kochfeld mit mehreren Kochzonen und der Backofen spielen trotz vieler Spezialgeräte immer noch die größte Rolle bei der Nahrungszubereitung. Für Elektro-Backöfen ist das EU-Label für elektrische Haushaltsgroßgeräte mit der Energieeffizienzklassifizierung A bis G vorgeschrieben, für Kochfelder und alle Gasgeräte dagegen zurzeit nicht. Gaskochfelder nutzen ca. 58 Prozent der eingesetzten Primärenergie zum Kochen, etwa doppelt so viel wie elektrische Koch- felder, weil die Umwandlungsverluste bei der Stromproduktion entfallen. Die Wär- me kommt durch die Flamme direkt an den Kochtopf, der Herd wird kaum miter- wärmt. Ein weiterer Vorteil ist die schnelle Regelbarkeit. Brenner mit automatischer Zündung sorgen dafür, dass die Gaszufuhr schließt, wenn einmal durch überkochen- des Wasser die Flamme erloschen ist. Es gibt auch Gaskochfelder mit Brennern, die unter einer Glaskeramikplatte liegen; das verlangsamt aber die Regelungsmöglichkeit. Herkömmliche Elektro-Kochfelder haben Gusseisenplat- ten als Kochzonen. Moderne elektrische Kochfelder sind mit einer Glaskeramikplatte (Ceranfläche) abgedeckt, darunter können Infrarotstrahler oder Halogenstrahler stecken. Induktionskochfelder, die ebenfalls mit einer Glaskera- mikplatte abgedeckt sind, erzeugen selbst keine Wärme, sondern ein magnetisches Wechselfeld. Dieses bewirkt im Boden des Kochtopfs einen elektrischen Strom, der den Topfboden erhitzt. Man benötigt spezielles Kochgeschirr. Die Wärmezufuhr lässt sich schnell regeln. Die Kochzonen werden nicht sehr heiß. Herzschrittmacher haben in einem Test nicht auf die verwendete Frequenz reagiert. ENERGIEBEDARF VON KOCHFELDERN Unter den elektrischen Kochfeldern benötigen Induktions- kochfelder am wenigsten Energie, ca. 20 bis 30 Prozent weniger als konventionelle Glaskeramik-Kochfelder. Die Mehrkosten für die Geräte und das gegebenenfalls neu zu Die Abbildung vergleicht den Strombedarf für drei ver schiedene Kochtätigkeiten ENERGIEBEDARF VERSCHIEDENER KOCHSYSTEME Datenquelle: Stiftung Warentest Kochplatte 1,5 l Wasser von 15 °C auf 90 °C erhitzen* 600 g Eintopf auf 80 °C erwärmen 45 Min. warmhalten * ohne Deckel (!) Glaskeramik Infrarot Glaskeramik Infrarot mit Sensor Glaskeramik Halogen Glaskeramik Induktion Strom in kWh 0 0,1 0,2 0,3 0,4 0,5 ENERGIESPAREN22 beschaffende Spezialgeschirr werden dadurch aber nicht ausgeglichen. Gusseiserne Kochplatten schneiden beim Energieverbrauch am schlechtesten ab. Kochfelder (und auch Backöfen) mit Uhr benötigen auch im ausgeschalteten Zustand Energie. Einzelheiten erfährt man nur in Testberichten; nur wenige Hersteller geben sie in der Gerätebeschreibung an. BACKÖFEN Gasbacköfen nutzen Energie besser als elektrische, aller- dings empfiehlt es sich, die Verbrennungsluft über eine Abluftanlage abzuführen. Für sie gibt es kein EU-Label. Moderne Elektrobacköfen gehören meist der Energie- effizienzklasse A an. Auf dem Energie-Etikett ist auch der Energiebedarf für einen Normbackvorgang angegeben. Wenn zweimal pro Woche gebacken wird, betragen die AUSWAHLGESICHTSPUNKTE BEI NEUKAUF • Ist ein Gasanschluss vorhanden, dann Gasherd kaufen • Halogenstrahler oder Induktionsfelder unter Ceranfel- dern benötigen weniger Strom • Sinnvolle Sicherheits- und Komfortaspekte: Abschalt- automatik; Restwärmeanzeigen; versetzt angeordnete Kochzonen; versenkbare Schalter im Aus-Zustand • Elektro-Backofen: Gerät der Energieeffizienzklasse A in bedarfsgerechter Größe wählen, Umluft ist günstig • Statt energieintensiver pyrolytischer Selbstreinigung die katalytische Methode bevorzugen • Anschaffung eines Mikrowellengeräts überlegen • Testberichte heranziehen zu Stand-by-Leistung, Sicherheitsfunktionen etc. ENERGIESPARTIPPS • Gut schließende Topfdeckel sparen Energie. Glas- deckel müssen seltener angehoben werden (auf gute Griffe achten) • Topfböden und Elektro-Kochzonen sollten sauber sein und guten Kontakt miteinander haben. Sandwich- Böden (innen Aluminium, außen Chromnickelstahl) verbessern den Wärmeübergang vom Herd zum Topf und sparen Energie (nicht bei Induktionsherden) • Topfgröße passend zur Größe der Kochzone (Platte) und zur Inhaltsmenge wählen • Automatikkochplatten sofort auf gewünschte Stufe einstellen (Geräteanleitung dazu beachten). Das Auf- heizen verzögert sich dadurch nicht • Abschalten vor Ende der Koch- oder Backzeit nutzt Restwärme • Warmhalten ohne Energieeinsatz mit Thermoskanne, Kochkiste, ... • Auftauen im Kühlschrank spart zweimal Energie: erst kühlt das Gefriergut das Kühlschrankinnere, danach ist es auf dem Herd schneller zu erwärmen • Gemüse, Kartoffeln, Eier müssen beim Garen nicht von Wasser bedeckt sein. Im geschlossenen Topf gart alles mit wenig Wasser (1 bis 2 cm hoch; Kontrolle!) energiesparend im Dampf. Geschmack und Vitamine bleiben besser erhalten • Dampfkochtöpfe reduzieren Garzeit und Energiebedarf um bis zu 60 Prozent bei langkochenden, 30 bis 40 Prozent bei kurzkochenden Gerichten • Elektrische Wasserkocher sind effizienter als der Elektroherd – und die Geräte schalten sicher ab • Wärmegedämmte Kochtöpfe verhindern Abstrahl- verluste an die Luft • Backofen: Vorheizen ist oft unnötig • Für spezielle Aufgaben stromsparender als Herd oder Backofen: Wasserkocher, Kaffeemaschine mit Thermoskanne, Eierkocher, Toaster, Mikrowellengerät jährlichen Stromkosten für eine mittlere Backröhre beim A-Gerät ca. 20 Euro, bei B 26 Euro und bei D 36 Euro. WEITERE VERFAHREN Mikrowellenherde erwärmen kleine Portionen (bis zu ca. 250 ml Flüssigkeit oder 500 g Gemüse bzw. Beilagen) ener- getisch günstiger als andere Geräte. Wenn häufiger kleine Mengen erwärmt werden, lohnt sich die Neuanschaffung eines Mikrowellenherdes schon allein aus Komfortgrün- den, denn es geht schnell, und aus Energiegründen, denn es wird nur die Speise und nicht der Herd und der Topf erwärmt. Eine Kochkiste besteht aus einem wärmegedämmten Behältnis und einem passenden Kochtopf. Reis, Kartof- feln und anderes kann auf dem Herd angekocht und in der Kochkiste ohne weitere Energiezufuhr fertig gegart werden. ENERGIESPAREN 23 Stromfresser im Büroschlaf Noch vor fünfzehn Jahren stand nur in jedem fünften deutschen Haushalt ein Computer. Inzwischen wollen vier von fünf Haushalten nicht mehr darauf verzichten, und auch das Mobiltelefon gehört zur Selbstverständlichkeit. Dagegen spricht nichts, solange die Geräte nicht unnötig Strom verbrauchen und die Haushaltskasse belasten. Wichtig sind eine kluge Wahl beim Einkauf und das Einhalten einiger Regeln bei der Nutzung. Nach einer Schätzung der Computerzeit- schrift „PC-Magazin“ könnte damit bei 30 Millionen Computern in Deutschland die elektrische Leistung eines halben Kernkraftwerks gespart werden. Wie viel Strom ein Computer braucht, hängt von den Komponenten ab, aus denen er besteht, und von der Art, wie er genutzt wird. Käufer haben grundsätzlich die Wahl zwischen einem Tischcomputer (Desktop) und einem trag- baren Rechner (Notebook). Notebooks brauchen rund 70 Prozent weniger Energie, weil sie für das mobile Arbeiten ohne Netzanschluss mit besonders sparsamen Bauteilen ausgestattet und mit kompakten Abmessungen entworfen werden. Doch das hat seinen Preis: Ein Notebook ist deut- lich teurer als ein Desktop gleicher Leistung. Außerdem ist die feste Verbindung von Tastatur und Bildschirm für langes Arbeiten nicht zu empfehlen. DEM TATSÄCHLICHEN BEDARF ANPASSEN Fast alle Komponenten eines Desktops können den Bedürf- nissen angepasst und auch später ausgetauscht werden. Wer schon beim Kauf ungefähr weiß, wozu der Rechner genutzt werden soll, kann Geld und später Energie sparen. Leis- tungsfähige Grafikkarten zum Anschauen von Filmen und für manche Spiele benötigen oft eigene Lüfter zur Kühlung. Sie machen Lärm und brauchen erheblich Strom. Für Büro- arbeiten oder die Verwaltung der Urlaubsfotos reicht meist die eingebaute Grafikkarte. KOMPONENTEN OHNE NETZSCHALTER Viele externe Komponenten von Computeranlagen wie z. B. Drucker oder Kopierer werden über ein eigenes Steckernetzteil mit Strom versorgt. Diese Netzteile haben normalerweise keinen Netzschalter. Sie ziehen ständig Strom, was man daran merkt, dass sie warm sind. Deshalb ist sehr zu empfehlen, eine Steckdosenleiste mit Netzschalter zu kaufen. Damit werden alle Komponenten vom Netz getrennt, ein- schließlich des PC selbst, denn der kann im ausgeschalteten Zustand ebenfalls mehrere Watt brauchen. Zudem gibt es Steckerleisten, die einen Schutz gegen Blitzschlag bieten. Eine sogenannte Master-Slave-Steckerleiste nimmt alle einge- steckten Geräte vom Netz, wenn das Führungsgerät (Master) ausgeschaltet oder in Ruhestand versetzt wird. Von den sons- tigen üblichen Bürogeräten brauchen allenfalls der DSL-Rou- ter, die Telefonanlage und das Telefaxgerät ständig Strom. Diese Geräte sollen normalerweise ständig bereit sein. Von Vorteil für die Strombilanz können auch Multifunk- tionsgeräte sein, die z. B. Drucker, Kopierer, Scanner und Fax in einem Gerät sind. Es ist nur eine Anschaffung für verschiedene Nutzungen nötig und auch Stand-by- und Betriebsstrom-Verbrauch entstehen nur einmal. Eine Richtlinie der Europäischen Union verpflichtet die Hersteller, nur noch Geräte mit maximal 1 bzw. 0,5 Watt Stand-by-Bezug auf den Markt zu bringen. Der höhere Wert gilt für Geräte, die im Stand-by eine Funktion erfüllen, wie z. B. eine Zeitanzeige. Schaltbare Steckerleiste auch mit Fußtaster ver fügbar ENERGIESPAREN24 HILFE BEIM KAUF Beim Kauf eines Computers oder eines Druckers müssen zahlreiche Kriterien berücksichtigt werden. Die nötigen Informationen zusammenzutragen und zu bewerten, ist an- spruchsvoll. Deshalb sind am Ende dieser Broschüre einige empfehlenswerte Informationsquellen zusammengestellt. Darin wird z. B. darauf hingewiesen, dass ein Computer- monitor das Qualitätssiegel TCO 6. 0. tragen, in Höhe und Neigung verstellbar sowie nicht spiegelnd sein sollte. Als Anhalt für übliche Strombezugswerte sind im Folgenden einige Daten aufgelistet: DURCHSCHNITTLICHER STROMVERBRAUCH (WATT) Gerät niedrig hoch Standard-PC (normal) 40 100 Spiele-PC 80 300 Notebook (Standard) 10 50 Notebook (für Spiele) 30 100 Netbook 10 20 Röhrenmonitor 21 Zoll (Geräte im Bestand ) 70 120 Flachbildschirm 19 bis 22 Zoll 22 40 Laserdrucker (Sleep Mode) 1 – Laserdrucker (Stand-by) 5 80 Laserdrucker (Druck) 180 665 Tintenstrahldrucker (Stand-by) < 1 8 Tintenstrahldrucker (Druck) 10 40 DSL-Router 2 8 SPAREN BEI DER ARBEIT Wie viel Strom der Computer samt Peripheriegeräten tat- sächlich verbraucht, kann die Nutzerin oder der Nutzer entscheidend beeinflussen. So werden z. B. Drucker und Scanner normalerweise nicht ständig gebraucht. Sie können dann ausgeschaltet werden. Manche Tintenstrahldrucker führen allerdings bei jedem Einschalten ein Reinigungs- programm durch und verbrauchen damit Tinte. Diese lässt man besser länger am Netz. Der Computer selbst lässt sich auf Sparbetrieb einstellen. Unter dem Betriebssystem Windows finden sich die ent- sprechenden Optionen in der Systemsteuerung. Dort lassen sich Energiesparoptionen wählen wie die, nach einer festge- legten Leerlaufzeit den Monitor, die Festplatte und schließ- lich den ganzen PC in den Stand-by-Zustand zu schalten. In ENERGIESPARTIPPS • Während längerer Arbeitspausen Geräte per schalt- barer Steckerleiste komplett ausschalten • Geräte nur mit so viel technischer Ausstattung kaufen, wie auch genutzt wird • Auf einfache Bedienung achten • Nicht gebrauchte Funktionen abschalten • Stand-by-Funktionen bei Bürogeräten während Arbeitspausen aktivieren • Ladegeräte für Mobilgeräte nach Ende des Lade- vorgangs aus der Steckdose nehmen • Unabhängige Beratungsangebote nutzen • Im Zweifel mit einem Messgerät prüfen, ob der Netzschalter eines Geräts dieses tatsächlich vom Netz trennt oder es in einen Schein-Aus-Zustand versetzt diesem Zustand wird zwar Energie gespart, die Computer- anlage kann aber durchaus noch mehrere Dutzend Watt ver- brauchen. Aus Stand-by-Stellung sollte sie nicht vom Netz getrennt werden, denn dann gehen alle nicht gespeicherten Daten verloren. Nach einer weiteren Wartezeit kann der PC sich dann in den sogenannten Ruhezustand versetzen. Nun kann der Rechner vom Netz genommen werden. Aus bei- den Sparzuständen kann man nach einem Tastendruck und kurzer Wartezeit dort weiterarbeiten, wo man aufgehört hat. TELEFONIEREN – UND SONST? Sparen können auch Benutzer von Mobiltelefonen und mobilen Adress- und Terminverwaltungsgeräten (Smartpho- nes und anderen). Die große Zahl der Funktionen dieser Geräte geht allerdings auf Kosten der Übersichtlichkeit. Wer ein Mobiltelefon wirklich nur zum Telefonieren nutzen will, sollte ein entsprechend einfaches, bedienerfreundliches Gerät kaufen, ggf. auf große Tasten und klare Beschriftung achten. Um den Akku zu schonen, empfiehlt es sich, nicht ge- brauchte Funktionen abzuschalten wie etwa einen Internet- zugang oder Funktionen wie Fotoapparat, Bluetooth und UMTS. Obwohl moderne Akkus sehr robust sind, sollte man sie möglichst nutzen, bis sie leer sind, und mindestens einmal im Monat laden. Und auch für manche Mobiltelefone gilt: das Ladegerät braucht Strom, wenn es unnötig am Netz bleibt. Für Smartphones gibt es neuerdings von vielen Herstellern ein einheitliches Ladegerät (DIN EN 50558) mit einem Mikro-USB-Stecker. Das spart beim nächsten Kauf Kosten. ENERGIESPAREN 25 Unterhaltungselektronik im Stromstreik Würden Sie sich eine Digitaluhr kaufen, die mehrere hundert Euro kostet und ständig mehr als zehn Watt elek- trischen Strom braucht? In vielen Haushalten steht so ein Gerät. Es heißt Video- oder DVD-Spieler und wartet täglich durchschnittlich 23 Stunden darauf, etwas tun zu dürfen außer der Zeit anzuzeigen. Wer zu Hause gerne Filme sieht und aufzeichnet, aber auch der Musikfreund mit Stereoanlage und Aktivboxen kann durch kluge Gerätewahl dutzende Euro Stromkosten im Jahr sparen. Fernsehgerät und Radio gehören heute selbstverständ- lich in fast jeden Haushalt. Doch gerade weil diese Geräte so selbstverständlich sind, ist es vielen Film- und Musik- freunden nicht richtig bewusst geworden, dass sich in den letzten Jahren ein Wandel der Gerätetechnik vollzogen hat. LICHTERFLUT IM MUSIKREGAL Es ist ein dreifacher Wandel. Erstens ist zur Musikanlage im Wohnzimmer längst das Zweit- und Drittradio in Küche und Schlafzimmer gekommen, oft ein tragbares Gerät mit Steckernetzteil ohne Schalter und Zusatzfunktionen wie Zeitanzeige oder Weckfunktion, so dass ständig Strom ver- braucht wird. Zweitens haben sich die Regale im Wohnzim- mer gefüllt mit zusätzlichen Apparaten für Satelliten- und Digitalempfang sowie das Aufzeichnen von Sendungen und mit aktiven, also Strom verbrauchenden Lautsprecherboxen. All diese Geräte brauchen Strom, und zwar, dies ist die drit- te Änderung, oft Tag und Nacht. Auf Netzschalter verzichtet mancher Hersteller ganz, oder er baut einen Schalter ein, der zwar das Gerät stumm schaltet, Teile aber ständig mit elektrischer Energie versorgt lässt (Schein-Aus). Meistens, aber nicht immer, sieht man das an Kontrollleuchten und Digitaluhren, die nie erlöschen oder spürt, dass das Gerät warm ist. Wer sicher gehen will, kann sich bei Energiebera- tungsstellen oder Stromversorgungsunternehmen ein Strom- messgerät ausleihen und einmal nachmessen, ob vermeint- lich ausgeschaltete Geräte tatsächlich keinen Verbrauch mehr haben. ALLZEIT BEREIT Manchmal ist die ständige Bereitschaft eines Geräts ge- wünscht und unvermeidlich. Schließlich soll der DVD- Rekorder auch den Krimi spät in der Nacht aufnehmen können. Dann ist es wichtig, schon beim Kauf nicht nur auf den Stromverbrauch im Betrieb zu achten – der Verbrauch im Bereitschaftsmodus (Stand-by-Betrieb) kann einen erheb lichen Anteil am gesamten Stromverbrauch ausma- chen. Ein effizientes Gerät braucht im Betrieb knapp zehn bis zwanzig Watt, und in Bereitschaft ein Watt oder weni- Eine Musikanlage besteht häufig aus mehreren Komponenten ENERGIESPAREN26 ger. Ineffiziente Geräte dagegen ziehen im Betrieb bis zu 30 Watt und im Stand-by kaum weniger, nämlich mehr als 13 Watt. Da Videogeräte üblicherweise ständig eingeschaltet sind, summieren sich die Stromkosten im Jahr bei einem ineffizienten Gerät auf rund 30 Euro, davon 27 Euro im Stand-by. Ein effizientes Gerät kommt dagegen mit gut 5 Euro im Jahr aus, davon 2 Euro im Stand-by-Betrieb. Ähnliche Unterschiede finden sich auch bei Fernsehgeräten, Decodern, Set-top-Boxen und anderen Geräten. Lassen Sie sich von Ihrem Händler die Verbrauchsdaten verschiedener Geräte zum Vergleich nennen, oder ziehen Sie Quellen wie die Berichte der Stiftung Warentest zu Rate. Wer den Kom- fort der Fernbedienung nutzen möchte, kann ein Vorschalt- gerät erwerben, welches zwischen z. B. Fern seher und Steck- dose eingesteckt und ebenfalls per Fernbedienung aktiviert wird. Mit dem ersten Drücken schaltet man dann das Vor- schaltgerät an, mit dem zweiten den Fernseher oder Geräte aus der Unterhaltungselektronik etc., es gibt hier mehrere Anwendungsmöglichkeiten. Bezugsquellen sind im Anhang genannt. Auch für Neugeräte der Unterhaltungselektronik gilt, dass nur noch ein Stand-by-Verlust von 1 bzw. 0,5 Watt zulässig ist. Zudem müssen viele Gerätegruppen laut einer EU-Richtlinie eine Auto-Power-Down-Funktion besitzen. DAS RICHTIGE GERÄT Wer Geräte kauft, die nur die Funktionen haben, die tat- sächlich benutzt werden, spart nicht nur beim Kauf, son- dern auch viele Jahre danach bei der Nutzung. Beispiel Fernsehgerät: Nicht immer ist es sinnvoll, sich eines mit besonders großem Bildschirm zu kaufen. Als Faustregel gilt: die Höhe des Bildes sollte etwa ein Fünftel bis ein Siebtel der Entfernung zum Gerät entsprechen. Wer seinen Fern- sehsessel drei Meter von seinem Fernseher entfernt aufstellt, kommt also mit einer Bildhöhe von 60 Zentimetern aus. Ob Röhrenfernseher, LCD- oder Plasma-Bildschirm – je nach Bauart und Modell ist der Stromverbrauch sehr unter- schiedlich, daher sind Informationen unabhängiger Stellen wichtig. Manche Geräte besitzen zusätzlich einen Schnellstartmodus, bei dem das Bild um wenige Sekunden schneller aufgebaut wird als aus dem üblichen Stand-by-Modus. Allerdings ist der Stromverbrauch hierfür meist sehr hoch, zwischen 15 und 30 Watt und verursacht zusätzliche Kosten von etwa 25 bis 50 Euro pro Jahr. Daher sollte dieser Modus unbe- dingt deaktiviert werden. AUSWAHLGESICHTSPUNKTE BEI NEUKAUF Alle Geräte sollten programmierte Einstellungen auch bei vollständigem Abschalten speichern können. Kaufen Sie Geräte, welche batterie- oder akkugepuffert sind und wählen Sie Modelle mit nur so vielen Funktio- nen, wie Sie auch benötigen. Fernsehgerät: Flachbildschirme brauchen weniger Strom als Röhrengeräte. Der Stromverbrauch von LCD- und Plasmafernsehern unterscheidet sich weniger wegen der Bildschirmtechnik als wegen des sonstigen Geräteaufbaus. Achten Sie auf einen gut erreichbaren Netzschalter, der das Gerät wirklich vom Netz trennt! Fernbedienung: Wenn der Griff zum Netzschalter nicht möglich oder zu unbequem ist, erkundigen Sie sich bei Ihrem Fachhändler nach einer Steckerleiste, die per Fernbedienung aktiviert werden kann. Sie braucht zwar ständig Strom, aber sehr viel weniger als die ange- schlossenen Geräte. Bedienerfreundlichkeit: Achten Sie auf ausreichend große Tasten, lesbare Beschriftung, verständliche Bedienungsanleitungen. Lassen Sie sich im Geschäft den Umgang mit dem Gerät zeigen. Seit kurzem gibt es auch für Fernsehgeräte ein EU-Label mit Effizienzklassen von A bis G. Über die nächsten Jahre wer- den dann zusätzlich die Labelklassen A+, A++ und A+++ ein- geführt, so dass ab 2020 die optische Klasseneinteilung für dieses Label der für Haushaltsgroßgeräte entspricht. Auch die schlechten Klassen E bis G entfallen nach und nach. DVD-Rekorder können heute oft nicht nur Sendungen auf DVD aufzeichnen, sondern sind zusätzlich mit einer Fest- platte ausgestattet, die die Kapazität für hunderte Stunden Film hat. Die Festplatte erlaubt es sogar, einen Film zu un- terbrechen, etwa wenn ein Telefonanruf kommt, und nach dem Gespräch noch während der Aufzeichnung dort weiter- zuschauen, wo man unterbrochen hat. Festplatten-Rekorder sind also sehr komfortabel. Doch sind sie teurer, und sie brauchen mehr Strom als Rekorder ohne Festplatte. Wer die Option nicht nutzen will, sollte deshalb einen Rekorder ohne Festplatte wählen. ENERGIESPAREN 27 Dauerläufer im Keller Wärme muss fließen – von dort, wo die Heizung sie erzeugt, dorthin, wo es warm und behaglich sein soll. Deshalb gehört zu einer Heizanlage mindestens eine Pumpe, die das erwärmte Wasser auf die Rundreise durch die Heizkörper schickt. Meist sorgt eine zweite für warmes Brauchwasser in Küche und Bad. Solche Umwälzpumpen sind stille Strom- verbraucher. Eine neue, effiziente Pumpe spart gegenüber einer durchschnittlichen im Bestand so viel Energie, dass sich selbst eine vorzeitige Anschaffung finanziell lohnt. Heizungspumpen in Ein- und Zweifamilienhäusern bezie- hen oft 80 bis 100 Watt Leistung, solche in Mehrfamilien- häusern entsprechend mehr. Manche Pumpen (zumindest in älteren Heizanlagen) laufen in der Heizperiode ständig, manche sogar das ganze Jahr über, Tag und Nacht, und verursachen damit rund 10 Prozent des durchschnittlichen Haushaltsstromverbrauchs. Aufgrund der großen Zahl der installierten Geräte summiert sich deshalb der Stromver- brauch von Heizungs- und Warmwasserpumpen auf etwa zwei Prozent des gesamten Verbrauchs in der Europäischen Union. SPAREN DURCH MODERNE TECHNIK Wie viel der einzelne Haushalt mit einer modernen Um- wälzpumpe sparen kann, zeigt ein Rechenbeispiel: Eine ältere Pumpe mit 100 Watt, die durchläuft, verursacht Stromkosten von fast 250 Euro im Jahr (angesetzter Strom- preis 28,5 Cent). Durch die Anschaffung einer modernen Pumpe kann man 60 bis 80 Prozent davon sparen. Das sind bis zu 200 Euro im Jahr. Eine neue, moderne Pumpe kos- tet inklusive Installation ungefähr das Doppelte. Sie macht sich also in zwei Jahren über die Stromrechnung bezahlt. Das Kernstück einer Umwälzpumpe ist ein Elektromotor. Dieser Motor muss leise laufen, er darf nicht viel Geld kos- ten, und er muss wartungsfrei sein. Viele Pumpen, die heute in Betrieb sind, haben sehr viel stärkere Motoren als nötig. Das liegt daran, dass die meis- ten Heizungsplaner und auch -installateure zu Vorsicht nei- gen und eher eine stärkere Pumpe einbauen, um nicht das Risiko einzugehen, dass der Kunde sich über mangelhafte Heizleistung beschwert. Ein Gespräch mit dem Installateur bei der Auftragsvergabe spart bares Geld, denn kleinere Pumpen sind billiger in der Anschaffung und sparen lang- fristig viel Energie. Zudem muss bedacht werden, dass eine starke Pumpe, die in ihrer Leistung gedrosselt wird, immer weniger effizient läuft als eine kleinere Pumpe, die optimal ausgelastet ist. Das heißt: War bisher eine 100-Watt-Pumpe installiert, genügt jetzt meist eine mit 20 Watt oder weniger. Allein der Austausch der Pumpe, ohne weitere Maßnahmen, spart also schon Energie. Als Faustregel gilt: Pro Kilowatt Heiz- leistung ist etwa ein Watt Pumpenleistung erforderlich. Hocheffiziente Heizungsumwälzpumpen in vielen Leistungs- stufen gibt es mittlerweile von allen Herstellern, beispielhaft seien diese gezeigt. Kenntlich sind sie am EU-Label mit der Effizienzklasse A. Für Pumpen, die warmes Heizungs- oder Brauchwasser transportieren, gibt es genau passende Wärmedämmschalen. Quellen: www.biral.ch, www.grundfos.de, www.wilo.de ENERGIESPAREN28 ENERGIESPARTIPPS • Alte Pumpe frühzeitig durch Hocheffizienzpumpe ersetzen • Pumpen knapp dimensionieren lassen • Betriebszeiten der Pumpen reduzieren • Auf Warmwasserzirkulation möglichst verzichten oder diese per Zeitschaltuhr auf die wesentlichen Zeiten für Warmwasserbedarf beschränken; im Eigenheim ist das unproblematisch, in Mietobjekten kann die Zirkulationspumpe evtl. in Intervallen betrieben werden • Zusammen mit dem Pumpentausch hydraulischen Abgleich durchführen lassen ELEKTRONISCH GEREGELT Gängige Heizungspumpen nutzen nur 5 bis 24 Prozent der elektrischen Leistung als Pumpleistung aus. Neue EC-Pum- pen mit Permanentmagnet-Motor liegen hingegen bei etwa 40 Prozent. Die Abkürzung EC steht für „electronically commutated“ und beschreibt eine elektronische Regelung. In Zeiten mit niedrigem Wärmebedarf ist bei herkömmli- cher Pumpenregelung die Pumpleistung zu hoch, denn die Thermostatventile sind dann fast oder ganz geschlossen, dennoch arbeitet die Pumpe. Eine moderne Pumpe mit EC-Motor passt die Drehzahl dem Bedarf an. HYDRAULISCHER ABGLEICH Auf jeden Fall ist es aber wichtig, dass der Installateur dafür sorgt, dass alle Heizkörper im Heizkreis gleichmäßig mit Wärme versorgt werden. Ohne diesen so genannten hydraulischen Abgleich kann es vorkommen, dass z. B. einzelne Heizkörper im Obergeschoss nicht richtig warm werden, wohingegen jene im Erdgeschoss heiß sind. Beim hydraulischen Abgleich werden Drosselventile an den Heizkörpern so eingestellt, dass alle gleichmäßig durchströmt werden. Zudem sollten dort, wo noch nicht geschehen, Thermo- statventile installiert werden. Es gibt voreinstellbare Mo- delle, über die der hydraulische Abgleich erfolgen kann. In manchen älteren Heizsystemen sind Strömungsgeräu- sche des Wassers zu hören, weil die zu große Pumpe gegen fast geschlossene Thermostatventile arbeitet. Auch dies entfällt durch die kleinere Heizungspumpe und den hydraulischen Abgleich. ANPASSEN UND AUCH MAL ABSCHALTEN Im Gespräch mit dem Installateur sollte man klären, dass die Regelung die Heizungspumpe im Sommerhalbjahr, solange nicht geheizt wird, abschaltet. Bei neuen Heiz- anlagen ist das so eingestellt, bei älteren oftmals nicht. Häufig ist auch für die Warmwasserzirkulation eine Pum- pe installiert. Als erstes sollte hinterfragt werden, ob das tatsächlich erforderlich ist. Der Transport des warmen Wassers zum Wasserhahn erfolgt über den Wasserdruck der öffentlichen Wasserversorgung, dafür ist keine Pumpe erforderlich. Wenn aus Komfortgründen eine Pumpe gewünscht ist, sollte deren Leistung dem speziellen Pump- bedarf zur Warmwasserversorgung angepasst und ebenfalls knapp dimensioniert sein. Die meiste Zeit des Jahres wird in den Nachtstunden weder Heizung noch warmes Wasser gebraucht. Für diese Zeiten kann man die Pumpen von der Heizungsregelung oder einer Zeitschaltuhr abschalten oder in Intervallen takten lassen. Weitere Informationen zu Pumpen und Regelung finden sich im Kapitel zur Heizung. KENNZEICHNUNG FÜR EFFIZIENTE PUMPEN Wer sich bei der Anschaffung einer neuen Heizungspumpe über deren Qualität informieren will, wird dabei seit 2005 durch das von Kühlschränken und anderen Haushalts- geräten bekannte EU-Energie-Label unterstützt. Im Januar 2005 haben sich 450 Pumpenhersteller in 18 europäischen Ländern verpflichtet, den Einsatz effizienter Umwälzpum- pen zu fördern und ihre Produkte in die Energiesparklas- sen A (effizient) bis G (wenig effizient) einzustufen. Das Bewertungsverfahren wurde international vereinheitlicht. In Deutschland wird seit 2005 außerdem das Umwelt- zeichen Blauer Engel für besonders effiziente Umwälz- pumpen vergeben. Gemäß der EU-Richtlinie für Ecodesign dürfen seit 2013 nur noch Hocheffizienzpumpen hergestellt und importiert werden – andere bekommen gar keine CE-Kennzeichnung mehr. Lagerbestände stromhungriger Modelle dürfen jedoch noch verkauft und eingebaut werden. ENERGIESPAREN 29 Kühle Küche, warme Stube In Baden-Württemberg gehen knapp ein Drittel der treibhausrelevanten Emissionen zu Lasten der fast 5 Millionen Wohnungen. Von diesen sind etwa fünf Prozent mit Strom beheizt und verursachen damit umgerechnet etwa sechs Pro- zent des Stromverbrauchs der Privathaushalte – angesichts der Diskussionen um den Klimaschutz eine nicht zu vernach- lässigende Größe. Daher wird in diesem Kapitel auch das Thema Umstellung auf andere Energieträger angeschnitten. Doch die meisten Tipps sind unabhängig vom Wärmeerzeugungssystem. Bei Fragen zum Gebäude hilft das Kapitel mit Beratungsangeboten am Ende der Broschüre weiter. WIE WARM SOLL ES SEIN? Wie viel Energie beim Heizen verloren geht, hängt nicht nur von Art und Zustand des Gebäudes und der Heizung ab, sondern maßgeblich auch von der Temperaturdifferenz zwischen beheiztem Wohnraum und Außenluft. Jedes Grad höhere Differenz erhöht den Verbrauch um etwa sechs Prozent! Wird ein Wohnraum auf 24 anstatt 20 °C beheizt, erhöht das die Energierechnung um fast ein Vier- tel! Andererseits ist es völlig normal, dass man sich in der Wohnung warm und behaglich fühlen möchte. Hier gilt es, einen guten Kompromiss zu finden und zu überlegen, welche Räume beheizt werden und mit welchen Tem- peraturen. Für die Küche reichen meist 18 °C, da durch das Kochen Abwärme entsteht, die zum Heizen beiträgt; Schlafzimmer werden meist mit 15 bis 17 °C auskommen, selten genutzte Gästezimmer können noch weiter abge- senkt und nur während eines Besuchs komfortabel beheizt werden. Wie hoch die Raumtemperatur liegen muss, um sich behaglich zu fühlen, hängt wesentlich von den Oberflächentempera- turen der umgebenden Wände und Fens- ter ab. Liegt diese nicht weit unterhalb von 20 °C, wie es bei gut wärmegedämm- ten Bauteilen der Fall ist, reicht auch eine Lufttemperatur von 20 °C für ein ange- nehmes Raumgefühl aus. Liegt sie hin- gegen deutlich tiefer, wie es bei älteren, energetisch nicht sanierten Gebäuden häufig vorkommt, sind 22 oder gar 24 °C Lufttemperatur notwendig, um gemütlich sitzen zu können. Entsprechend steigt der Energieverbrauch an. GANZ WICHTIG: RICHTIG LÜFTEN! Ein ausreichender Luftwechsel ist zum einen nötig, um das Kohlendioxid und die Feuchtigkeit aus der Atemluft ab- zuführen, zum anderen entsteht durch Kochen, Waschen, Duschen feuchtegesättigte Luft, die ausgetauscht werden muss. Kritisch wird es, wenn z. B. nach dem Duschen Türen zwischen Bad und wenig beheizten Räumen offen stehen, oder wenn das Schlafzimmer mit der warmen Luft aus dem Wohnzimmer „überschlagen“ werden soll: Leicht entsteht dann in den kühleren Räumen in Außenecken oder am Fenstersturz Schimmel. Wenn es Uneinigkeit wegen des Lüftungsverhaltens gibt, ist ein Hygrometer zur Messung der tatsächlichen Raumluftfeuchte ein gutes Hilfsmittel. Feuchtigkeit aus dem Bad sollte direkt nach außen abge- führt werden, schnell und gründlich. Optimal geschieht dies durch 5 bis 20 Minuten Querlüften, aber bitte bei zu- gedrehtem Thermostatventil! Bei gekipptem Fenster dauert es hingegen bis zu drei Stunden, die Luft im Raum einmal Stoßlüftung statt Kipplüftung 0 1 t (in Stunden) 2 3 4 0% 20% 40% 60% 80% 100% Stoßlüftung Dauerlüftung 5 20 min Anteil der Frischluft an der Raumluft Quelle: Verbraucher-Zentrale NRW Kurz Durchzug machen nützt am meisten (Quelle: Energieagentur NRW) ENERGIESPAREN30 auszutauschen! Bei trockener Außenluft, wie es im Win- ter der Fall ist, geht das Lüften sehr schnell, bei feuchter Außenluft, z.B. an einem schwülen Sommertag, dauert es entsprechend länger. Unter Umständen wird bei schwülem Wetter sogar Feuchtigkeit von außen nach innen transpor- tiert, dann bleibt das Fenster besser geschlossen bis zur Nacht, wenn es abgekühlt hat. Wie sehr sich Stoßlüftung und Kipplüftung unter- scheiden, zeigt das Diagramm der Energieagentur Nord- rhein-Westfalen sehr schön. Vergleiche zwischen Wohnungen in bestehenden Gebäu- den ergaben, dass im Extremfall ein verschwenderischer Haushalt doppelt so viel Heizenergie für eine gleich große Wohnung benötigt, wie ein sparsamer. Wesentlich hierfür waren vor allem Raumtemperatur und Lüftungsverhalten, zwei Faktoren, auf die BewohnerInnen direkt Einfluss neh- men können. GEBÄUDEENERGIEAUSWEIS Aufgrund der geltenden Energieeinsparverordnung muss bei Mieterwechsel oder bei Verkauf von Seiten des Besit- zers ein Gebäudeenergieausweis vorgelegt werden. Die einfachere Form wird aus dem Durchschnittsenergie- verbrauch der letzten Jahre berechnet, schließt also das Nutzerverhalten der bisherigen BewohnerInnen mit ein (verbrauchsabhängiger Ausweis). Eine zweite Version wird aus den Kenndaten der vorhandenen Gebäudesubstanz errechnet, ist also unabhängig von der Nutzung (bedarfsab- hängiger Ausweis). Für beide gilt: Die angegebenen Kenn- werte bezüglich des Heizenergieverbrauchs pro Quadrat- meter Wohnfläche sind Anhaltswerte für einen Vergleich zwischen verschiedenen Wohnungen. Im konkreten Fall kann der Verbrauch aufgrund des Nutzerverhaltens jedoch deutlich höher oder tiefer liegen. THERMOSTATVENTILE Seit geraumer Zeit ist der Einsatz von Thermostatventi- len in Mietwohnungen Vorschrift, er empfiehlt sich aber genauso für die Eigentumswohnung. Durch eine tempera- turabhängige Masse im Ventilkopf wird abhängig von der Umgebungstemperatur sowie von der gewählten Vorein- stellung der Durchflussweg für das Heizungswasser mehr oder minder geöffnet. Für Urlaubszeiten oder für nicht genutzte Räume kann die Frostschutzstellung verwendet werden, kenntlich gemacht durch eine Schneeflocke oder einen Stern. Die Prinzipskizze zeigt einen Schnitt durch Über die gewählte Stufe wird die Raumtemperatur vorein- gestellt. Ist sie erreicht, wird das Ventil durch das tempera- turempfindliche Ausdehnungselement geschlossen (Quelle: Energieagentur NRW) ein solches Ventil. Für manche Räume, die zu bestimmten Zeiten genutzt werden, empfehlen sich programmierbare Thermostat- ventile. So lässt sich zum Beispiel für das Bad für morgens und abends die Heizung anschalten, tags, wenn kaum jemand das Bad nutzt, wird die Temperatur abgesenkt. Diese Ventile gibt es auch mit Wochenprogramm, so dass die Zeiten für das Wochenende entsprechend angepasst werden können. Für einen Hobby-Raum, der nur gelegentlich genutzt wird, kann ein funkgesteuertes Thermostatventil vorteilhaft sein, das bei Bedarf eine Stunde vor Nutzung geöffnet wird. Manche Ventil-Typen schließen automatisch, wenn das da- rüber liegende Fenster zum Lüften geöffnet wird. Sie kön- nen einen schnellen Temperaturabfall messen und darauf reagieren. Andere Typen schließen, wenn ein Fensterkon- takt meldet, dass das Fenster geöffnet ist. Die Energie für den Ventilbetrieb liefert bei diesen Modellen eine Batterie, die gelegentlich erneuert werden muss. Seit kurzem gibt es am Markt ein Wärmeverteilsystem, bei dem anstatt Thermostatventilen hocheffiziente Mini- ENERGIESPAREN 31 Pumpen an jedem Heizkörper installiert sind. Nur bei Wärmeanforderung im Raum läuft die besonders leise Pumpe mit wenigen Watt Leistungsbezug an. Dies ermög- licht eine sehr gut an den Bedarf angepasste Wärmeliefe- rung und damit eine Einsparung an Heizenergie und an Strom. Der Einbau ist in Neubauten leichter zu realisieren als in Bestandsgebäuden, da die Pumpe samt Raumrege- lung eine Stromversorgung benötigt. HEIZUNGSREGELUNG Heizsysteme in Wohngebäuden besitzen eine Regelung, die im Wärmeerzeuger dafür sorgt, dass bei kalter Außen- temperatur eine höhere Temperatur des Heizungswas- sers eingestellt wird, bei wärmerer Witterung eine tiefere oder dass der Heizkessel ganz ausgeschaltet wird, wenn es außen warm genug ist. Die so genannten Regelparameter können vom Wartungsdienst den individuellen Anforde- rungen angepasst werden. Auch die Zeiten, in denen mit Normaltemperatur geheizt wird, oder eine abgesenkte Temperatur ausreicht, können an der Regelung eingestellt werden. Wenn das Brauchwarmwasser über die Heizzen- trale erwärmt wird, können auch dessen Temperatur und die Aufheizzeiten regeltechnisch festgelegt werden. Mit diesen Parametern kann für geringeren Energiever- brauch gesorgt werden, durch sinnvolle Heizzeiten, durch Vorlauftemperaturen, die so hoch wie nötig, aber auch so tief wie möglich eingestellt sind. Dies liegt in der Hand des Servicehandwerkers, oder auch in der eines gut informier- ten Laien, der manches selbst vorwählen kann. Von der Veränderung von Regelparametern, deren Effekte nicht eingeschätzt werden können, sollte man allerdings die Finger lassen. Relativ einfach ist es meist, für Urlaubszei- ten die Heizung herunter zu fahren, so dass nur noch eine Frostsicherung gegeben ist und auf die Erwärmung des Brauchwassers ganz verzichtet wird. Auch bei Abwesenheit übers Wochenende kann eine Absenkung sinnvoll sein. WELCHEN ENERGIETRÄGER WÄHLEN? Als Kriterien zur Auswahl eines Heizsystems sind wichtig: • die Anfangsinvestition für Heizzentrale und Wärme- verteilung, • die jährlich anstehenden Betriebskosten für den Energie- träger und die Wartung, • die Emissionsbilanz (vergleiche Kap. zu Warmwasser- bereitung). Steht bei Ihnen im Haus ein Heizungsaustausch an, müssen Sie daran denken, erneuerbare Energien bei der künftigen Wärmeversorgung einzusetzen. Das Erneuerbare-Wärme- Gesetz Baden-Württemberg gibt seit dem 1. Januar 2010 vor, dass nach einem Heizungsaustausch 10 Prozent er- neuerbare Energien genutzt oder andere Energieeffizienz- maßnahmen wie z. B. Dachsanierung oder Heizanlagen mit Kraft-Wärme-Kopplung umgesetzt werden müssen. Zum 1. Juli 2015 treten modifizierte Bedingungen für dieses Gesetz in Kraft. Nähere Informationen finden Sie unter www.um.baden- wuerttemberg.de im Kapitel „Energie“ unter dem Stich- wort „Erneuerbare-Wärme-Gesetz für Alt bauten“. Ähnliche Anforderungen gibt es seit dem 1. Januar 2009 bundesweit für die Errichtung neuer Gebäude. Auch hier gilt es, bei der Wärmeversorgung erneuerbare Energien anteilig ein- zusetzen oder z. B. besondere Dämmstandards oder andere Ersatzmaßnahmen zu verwirklichen. Nähere Informationen hierzu finden Sie ebenfalls unter www.um.baden-wuerttemberg.de unter dem Kapitel „Energie“. Elektroheizungen liegen mit den CO 2 -Emissionen um den Faktor 3,6 über denen von Gasbrennwertanlagen und sogar um den Faktor 13 über denen von Holzpelletheizungen. Langfristig sollte daher immer dann, wenn eine Elektro- heizung altershalber ersetzt werden muss, der Umstieg auf andere Energieträger erwogen werden. Am Anfang kann das hohe Investitionen verlangen. Bezieht man allerdings ENERGIESPAREN32 ENERGIESPARTIPPS • Stets möglichst niedrige Raumtemperatur einstellen • Beim Lüften die Thermostatventile zudrehen! • Kurz Stoßlüften, möglichst quer lüften; nicht über lange Zeit mit gekipptem Fenster • Heizkörper und Thermostatventile nicht mit Möbeln oder Vorhängen verdecken • Nachts Temperaturabsenkung vorsehen • Bei Abwesenheit tagsüber Heizung auf „Absenken bis xy Uhr“, bei mehrtägiger Abwesenheit auf „Ferien“ einstellen • Nachts Rollläden, Fensterläden, Vorhänge zu • An der Regelung die Heizkurve vom Handwerker rich- tig einstellen lassen • Hydraulischen Abgleich durchführen lassen (vergleiche Kapitel zu Umwälzpumpen) • Heizung regelmäßig warten lassen • Elektro-Direktheizgeräte sind die teuerste Form der Wärmeerzeugung den baulich bedingten Anteil der Sanierungskosten und die jährlichen Betriebskosten mit ein, gibt es durchaus wirtschaftlich konkurrenzfähige Versorgungssysteme mit recht geringer Schadstoffemission, wie beispielsweise eine Gasbrennwerttherme oder einen Holzpelletkessel. Wichtig ist, den Einzelfall genau anzusehen. Beispielsweise kann bei einer Umstellung auch eine Kollektoranlage für die Wassererwärmung eingeplant werden. Stiftung Warentest hat im Heft vom Oktober 2010 einen Vergleich zu Kosten und zu Emissionen zwischen Gas- brennwert-, Ölbrennwert- und Pelletkessel veröffentlicht. Bei der Anfangsinvestition sind Gas- und Ölkessel im Vorteil, bei den langfristigen Betriebskosten hingegen der Pelletkessel. Bei den Schadstoffemissionen liegt ebenfalls die Pelletheizung vorn, um den Faktor 5 gegenüber Gas und den Faktor 6,5 gegenüber Öl! Auch Aspekte wie die Lagerung von Brennstoffen (für Öl und Pellets) müssen in einer Planung überlegt werden. FÖRDERPROGRAMME Es gibt verschiedene Programme des Landes und des Bundes, die Investitionen in Energieeffizienzmaßnahmen und regenerative Energien durch zinsverbilligte Kredite fördern. Über die KfW-Bank sind auch Zuschüsse für Effi- zienzmaßnahmen erhältlich, erneuerbare Energien werden über das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) bezuschusst. Für Wohnungseigentümergemein- schaften bietet Baden-Württemberg über die L-Bank ganz besonders günstige Kreditkonditionen für Sanierungs- maßnahmen an. Informationen erhalten Sie ebenfalls im Internet-Portal des Umweltministeriums. Wer eine unabhängige Kalkulation haben möchte, sollte eine firmenneutrale Beratung über eine der am Ende ge- nannten Beratungsstellen einholen. Unter wirtschaftlichen Gesichtspunkten ist eine gut fundierte Entscheidung bei Neu-Installation oder bei Ersatzbedarf sehr wesentlich für den wirtschaftlichen Erfolg. Auch Fördermöglichkeiten können nur so sachgerecht einkalkuliert werden. ENERGIESPAREN 33 Heiße Quellen Die Warmwasserversorgung im Haus kann mit der Heizung gekoppelt sein oder über getrennte Anlagen sicher- gestellt werden. Für die Auswirkungen dieses Energieverbrauchers auf das Erdklima gelten ähnliche Aussagen wie für diejenigen der Heizanlage; doch ist es vielfach möglich, eine Sonnenkollektoranlage zur Wassererwärmung zu installieren und so die Emissionsbilanz zu verbessern. Stets über warmes Wasser zu verfügen, gehört heute zu den selbstverständlichen Komforterwartungen. Die Dienstleistung „Warmes Wasser“ kann jedoch mit mehr oder weniger Input an Energie bereitgestellt werden. In einer großen Zahl von Wohnungen wird das warme Wasser über die Zentralheizung und durch den Energieinhalt des jeweils verwendeten Rohstoffs Gas, Öl, Holz etc. erwärmt. In einer zunehmenden Zahl von Gebäuden trägt auch ein Sonnenkollektor wesentlich zur Wassererwärmung bei. Wohnungen mit elektrischer Beheizung haben auch elek- trisch beheizte Durchlauferhitzer oder Wasserspeicher. Ein Zwei-Personen-Haushalt wird für die Wassererwärmung jährlich etwa 1.300 Kilowattstunden Strom verbrauchen, umgerechnet entspricht das rund 370 Euro. Kann stattdes- sen Gas eingesetzt werden, sinken die reinen Verbrauchs- kosten auf unter 100 Euro. WELCHE SYSTEME WERDEN VERWENDET? In Wohnungen mit zentralem Gas- oder Öl-Wärmeer- zeuger und gekoppelter Wassererwärmung gibt es einige einfache Möglichkeiten, Energie einzusparen: In kleineren Gebäuden wie Ein- und Zweifamilienhäusern kann bei- spielsweise oft darauf verzichtet werden, das warme Wasser ständig in einem Kreislauf durch das Haus zirkulieren zu lassen, ohne dass dies den Komfort stark senken würde. Man muss lediglich eine kurze Zeit warten, bis warmes Wasser kommt. Das spart Brennstoff, weil das Brauch- warmwasser nicht mehr durch die Zirkulation „gekühlt“ wird, und es spart Strom, den sonst die Warmwasserzirku- lationspumpe benötigen würde. In manchen Warmwas- sersystemen wurde statt der Zirkulation die Wasserleitung mit einem elektrischen Heizband warm gehalten, ein teu- rer Komfort. Diese stillzulegen senkt die Stromrechnung merklich. Der Energieverbrauch eines Warmwasserspeichers, der über die Heizzentrale erwärmt wird, hängt neben regel- technischen Einstellungen auch von der Wärmedämmung ab. Ältere Speicher haben hier häufig Defizite. Bei einer Neu-Installation sollte auf geringe Wärmeverluste Wert gelegt werden. Ein engagierter Heimwerker kann einen vorhandenen Speicher auch nachträglich mit einer zusätz- lichen Dämmschicht einpacken. Allerdings sollte dazu fachtechnische Beratung eingeholt werden. Bei elektrischer Beheizung sind Durchlauf- und Speicher- geräte zur Wassererwärmung gebräuchlich. Speicher wer- den, wenn sie beispielsweise 50 Liter oder mehr Volumen haben, meist mit Nachtstrom erwärmt. Durchlauferhitzer beziehen den Strom dann, wenn Bedarf ansteht, also auch Kollektoren (rechts) zur Wassererwärmung und Heizungsun- terstützung und Fotovoltaik-Elemente (links) zur Stromerzeu- gung sind an diesem Neubau optisch gut gestaltet. Quelle: www.hartmann-energietechnik.de ENERGIESPAREN34 zu Tagstromzeiten. Auch die kleinen Untertischspeicher mit fünf oder zehn Litern Fassungsvermögen sind in der Regel Tagstromverbrauch und erwärmen daher das Wasser mit recht hohen Kosten. Nur für das dezentral gelegene Gästezimmer, das nur ab und zu genutzt wird, ist diese Variante bei einer neuen Anlage zu empfehlen. Ist ein Un- tertischspeicher vorhanden, der selten, aber doch genutzt wird, empfiehlt sich die Installation eines Zwischenschal- ters: Auf Knopfdruck wird Strom für einmalige Erwärmung des Speichers freigegeben, danach schaltet sich das Gerät ab – bis zur nächsten Anforderung. Ein Sonnenkollektor kann auch in Kombination mit einer Elektroheizung eine sinnvolle Ergänzung sein. Optimal hinsichtlich der Schadstoffbilanz ist es jedoch, wenn statt Strom ein anderer Energieträger eingesetzt werden kann. LEGIONELLEN Um das Wachstum von Legionellen im warmen Wasser zu verhindern, wird empfohlen, Wasserspeicher auf 60 °C aufzuheizen. Legionellen wachsen bevorzugt bei 30 bis 45 °C, mit 60 °C wird das Wasser thermisch desinfiziert. Dort, wo warmes Wasser öffentlich zur Verfügung gestellt wird, wie etwa in Bädern oder auch in Krankenhäusern, ist dieser Schutz der Nutzer unbedingt erforderlich. Auch die Was- serversorgung in Mehrfamilienhäusern muss mindestens 60 °C im Speicher und 55 °C in der Zirkulationsleitung aufweisen. Vermieter mussten laut Trinkwasserverordnung bis Ende 2013 einen Trinkwassertest auf Legionellen durchführen und diesen danach alle 3 Jahre wiederholen lassen. Werden Legionellen gefunden, müssen die Mietparteien benachrich- tigt und Gegenmaßnahmen veranlasst werden. Im privaten Haus sind Infektionen sehr selten, doch wer ganz sicher ge- hen will, beziehungsweise, wer gesundheitlich geschwächt ist, hält sich auch dort an die Empfehlung. Regelungen von Warmwasserspeichern sind häufig so programmiert, dass sie einmal pro Woche den Speicher auf 60 °C aufheizen, um den Legionellenschutz zu gewährleisten. In der übrigen Zeit kann ein Speicher im Ein- und Zwei-Familienhaus dann auf beispielsweise 50 °C betrieben werden. Bei niedrigerer Temperatur verringert sich nicht nur der Energieverlust durch Wärmeabstrahlung, sondern auch der Ausfall von Kalk im Speicher. Bei Durchlauferhitzern tritt laut den Fachplanern das Legionellen-Problem nicht auf, sofern hinter dem Gerät maximal drei Liter Wasser in der Leitung stehen. SYSTEMVERGLEICH Die folgende Abbildung zeigt die Treibhausgas-Emissionen verschiedener Wärmeversorgungssysteme für kleinere Gebäude mit einer Heizleistung bis 15 Kilowatt. Ein Öl- Legende: THG – Treibhausgas; NT – Niedertemperatur; BW – Brennwert; WP – Wärmepumpe; BHKW – Blockheizkraftwerk; eta – Wirkungsgrad; JAZ – Jahresheizzahl (sollte über 3,5 liegen); JHZ – Jahresheizzahl; kWh – Kilowattstunde; g – Gramm. Berechnung erfolgte mit Gemis 4.2 bzw. 4.4 Quelle: Schüwer/Merten, Wuppertal-Institut ENERGIESPAREN 35 Niedertemperaturkessel emittiert demnach pro Kilowatt- stunde Endenergie 385 Gramm Treibhausgase, ein Gas- brennwertgerät mit kombiniertem Sonnenkollektor 178 Gramm, ein Niedertemperatur-Holzpelletkessel nur 38 Gramm. Es ist jeweils die gesamte Versorgungskette berücksichtigt, also auch der Transport der Pellets und die Verluste bei der Stromerzeugung im Kraftwerk. Die für die Vergleichsrechnung angesetzte Jahresarbeitszahl von 3,8 für die Elektrowärmepumpe wird nur bei einer optimalen Planung erreicht. Feldversuche zeigen Werte, die deutlich unter drei liegen, teils sogar nur bei zwei. Entsprechend höher sind dann der Primärenergieeinsatz sowie der Schad- stoffausstoß, ebenso die Betriebskosten – die Wärme- pumpe wird zunehmend zur Elektrodirektheizung und damit unwirtschaftlich. Die für positive wirtschaftliche Ergebnisse und eine vertretbare Emissionsbilanz mindes- tens erforderliche Jahresarbeitszahl von 3,5 wird meist nur bei Nutzung von Erdwärme oder von Grundwasser in Verbindung mit einer Niedertemperaturheizung in einem Niedrigenergie- oder Passivhaus erreicht. Auch die Erwärmung des Brauchwassers über einen Kol- lektor ist eine sehr umweltfreundliche Technik. Kollektor- anlagen amortisieren sich bei richtiger Auslegung inner- halb ihrer technischen Standzeit, das heißt, dass die höhere Anfangsinvestition durch die Ersparnis an Energiekosten aufgewogen wird. Selbstverständlich müssen auch wirtschaftliche Aspekte in die Überlegungen einfließen, doch wird es bei einer Neuplanung oder auch bei einer Sanierung häufig möglich sein, eine Versorgungsvariante zu finden, die ökonomisch und ökologisch gute Ergebnisse zeigt. ENERGIESPARTIPPS • Wasser nicht unnötig laufen lassen • Zum Händewaschen reicht oft kaltes Wasser • Spararmaturen verwenden, das sind Wasserhähne und Duschköpfe, die durch Luftzumischung einen vollen Wasserstrahl erzeugen, dabei aber den Wasser- durchlauf verringern • Wasser-Mischarmaturen können so eingestellt wer- den, dass in Mittelstellung kaltes Wasser kommt und erst bei bewusster Wahl der Einstellung auf „warm“ Wasser mit höherer Temperatur ausläuft • Lieber duschen statt baden, das braucht nur etwa ein Drittel des Wassers und der Energie • Auf Warmwasserzirkulation verzichten, wenn nur geringer Komfortverlust entsteht. Zumindest Betriebs- zeiten einschränken • Elektrische Heizbänder stilllegen • Temperatur von Warmwasserspeichern in der Regel auf 50 °C begrenzen (weniger Kalkausfall, geringere Abstrahlverluste) • Zur Legionellenvermeidung heizen moderne Regelungen den Wasserspeicher automatisch einmal wöchentlich auf 60 °C auf • Ist im Gästezimmer ein elektrischer Untertischwarm- wasserspeicher installiert, kann dieser komplett aus- geschaltet werden, wenn kein Besuch da ist (Frost- schutz wird über die Heizung gesichert) • Wenn keine andere Möglichkeit als elektrische Wasser erwärmung vorhanden, ist ein elektronisch ge- regelter Durchlauferhitzer die energetisch günstigste Variante Weiterführende Informationen Nachstehend finden sich sehr viele Bezugsquellen für Informationen zu den angeschnittenen Themenfeldern, häufig mit Internetadressen. Informationen über Klimaschutz, Energie- und Umwelt- themen gibt es vom Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg über www.um.baden-wuerttemberg.de. Auch zum Erneuer- bare-Wärme-Gesetz finden sich dort Informationen; zudem sind zahlreiche andere Websites in der Linkliste aufgeführt. In Karlsruhe hat die Klimaschutz- und Energieagentur des Landes Baden-Württemberg (Kaiserstr. 94a, 76133 Karlsruhe, Tel. 0721 98471-0) ihren Sitz. Sie bietet über ihre Internetseite www.kea-bw.de Informationsmög- lichkeiten zu vielen energietechnischen Themen und leitet gegebenenfalls an die Energieagenturen vor Ort weiter. Hier ist auch die Informationskampagne „Zukunft Altbau“ angegliedert, die auf der Website www.zukunftaltbau.de Informationsmaterial zum Thema Altbausanierung zur Ver- fügung stellt und eine Kontaktdatenbank von Energiebe- ratern pflegt, worin jemand bei Ihnen in der Nähe gesucht werden kann. BERATUNG In fast allen Landkreisen in Baden-Württemberg wurden in den letzten Jahren Energieagenturen gegründet; auch dort gibt es Beratungsangebote, zum Teil auch die Möglichkeit für Termine vor Ort. Wo dieses Angebot besteht, ist unter dem Link www.kea-bw.de zu erfahren. Die Verbraucherzentrale bietet in Baden-Württemberg in Kooperation mit den regionalen Energieagenturen Beratun- gen an, eine telefonische Anmeldung ist notwendig. Über den Link www.vz-bawue.de im Unterpunkt „Beratungs- stellen“ sind die Orte aufzufinden. Zudem ist im Internet ein breites Informationsangebot verfügbar. Viele Kommunen haben Energie- und Umweltbeauftragte eingesetzt, ebenfalls eine Möglichkeit, Informationen zu erhalten, Adressen und Telefonnummern finden sich im Telefonbuch unter „Stadtverwaltung“ oder „Landratsamt“. Manche Energieversorgungsunternehmen haben Beratungsstellen zu Energiefragen, und wenn es um die Heizung geht, ist auch eine persönliche Beratung vor Ort möglich. Der Elektro-Fachhandel berät zu effizienten Elektrogerä- ten. Beim Besuch im Geschäft ist es nützlich, die jeweiligen Fragen zu den einzelnen Geräten aus der vorliegenden Broschüre parat zu haben, um gezielt zu den Antworten zu kommen, die den Stromverbrauch betreffen. Eine Da- tenbank mit Händleradressen, die besonders auf effiziente Geräte Wert legen, findet sich unter www.stromeffizienz. de im Kapitel „Private Verbraucher“ im Stichwort-Block unten auf der Seite. In manchen Landkreisen in Baden-Württemberg gibt es das gemeinsame Projekt 60+ von Seniorenrat und Kreis- handwerkerschaft, das mit dem Ziel gegründet wurde, bei Wohnungssanierungen auf die speziellen Bedürfnisse von Seniorinnen und Senioren besser einzugehen, um anste- hende Investitionen optimal zu gestalten. Gerät zum Messen des Stromverbrauchs in Stand-by oder in Betrieb, auszuleihen bei Energieagenturen, kommunalen Energiereferaten oder Energieversorgungsunternehmen ENERGIESPAREN36 Die test-Hefte der Stiftung Warentest sind eine sehr kundenbezogene Informationsquelle zu vielen Fragen um Energie und Umwelt im Haushalt. Teilweise sind sie in Bibliotheken einzusehen oder auszuleihen, evtl. auch in Beratungsstellen. Unter www.test.de besteht für ange- meldete Nutzerinnen und Nutzer auch die Möglichkeit, Artikel per Internet zu beziehen. EINIGE NÜTZLICHE WEBSITES www.ecotopten.de Das Öko-Institut hat ein Informationsprogramm mit dem Namen EcoTopTen aufgebaut, worin zu verschiedenen haushaltsrelevanten Themen Fragen zu Energie und Um- welt behandelt werden. In der Regel werden die spar- samsten zehn Geräte aufgeführt (daher TopTen). Zudem sind Anschaffungskosten für Geräte und Anlagen genannt. Das Projekt wird laufend weiter entwickelt; aktuell wird es getragen von der Nationalen Klimaschutzinitiative des Bundesministeriums für Umwelt, Naturschutz und Reak- torsicherheit sowie durch das EU-Programm „Intelligent Energy Europe“. www.topten.ch Schon seit einigen Jahren gibt es in der Schweiz ein ent- sprechendes Programm, die Informationen sind eine gute Ergänzung zu ecotopten. www.spargeraete.de Vom Niedrigenergie-Institut Detmold wird seit langer Zeit eine Gerätedatenbank gepflegt, die einen sehr guten Überblick über den Verbrauch neuer Geräte und insbeson- dere den Vergleich zu durchschnittlichen und ineffizienten Geräten bietet. Die Daten werden laufend aktualisiert. Das Umweltministerium Baden-Württemberg bietet einen Download dieser Liste an unter www.um.baden- wuerttemberg.de im Kapitel „Presse & Service“ unter Publikationen. www.co2online.net Unter einer Website, die vom Bundesumweltministerium gefördert wird, sind verschiedene Angebote aufzufinden, wie der Stromverbrauch verringert werden kann. www.stromeffizienz.de Die Deutsche Energieagentur in Berlin gibt Tipps zu Stromeinsparmöglichkeiten. Sie verfügt über eine Datenbank, in die sich bundesweit Elektro-Fachhändler eingetragen haben, die dem Thema effiziente Elektrogeräte besondere Aufmerksamkeit widmen. Als zweites sind dort Beratungsstellen gelistet. So können Beratungsangebote vor Ort aufgefunden werden. Außerdem werden auf der Seite auch Neuerungen zu Effizienzklassen aufgezeigt. Weitere Informationen dazu gibt es auch unter http://label-online.de/label/eu-energielabel-elektro- backoefen/ Weitere Verbrauchsdaten zu einzelnen Geräten gibt es unter www.dena.de. QUELLENANGABEN Zu Energieeffizienzklassen, Schleuderwirkungsklassen wur- den Datenblätter von der Website www.stromeffizienz.de verwendet. Gerätedaten wurden außerdem einbezogen aus www.strompreise.de, www.die-stromsparinitiative.de, www.heise.de, www.spargeraete.de, www.ecotopten.de, www.topten.ch, Katalogen und Websites mehrerer Her- steller von Haushaltsgroßgeräten, http://asue.de/cms/up- load/inhalte/energie_im_haus/broschuere/09_10_14_ sparsame_haushaltsgeraete.pdf Das Umweltbundesamt hat eine Reihe von Studien zum Themenfeld Leerlaufverluste sowie zu künftiger Informati- onstechnik und Energieverbrauchsentwicklung herausgege- ben; auch daraus sind Daten verwendet worden. www.umweltbundesamt.de ENERGIESPAREN 37 Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg • Kernerplatz 9 • 70182 Stuttgart Telefon: 0711 126-0 • poststelle@um.bwl.de[mehr]

              Dateityp: PDF-Dokument
              Dateigröße: 2,10 MB
              Verlinkt bei:
                Zuletzt geändert: 06.05.2020
                69745-Risiko_verringern__Chancen_nutzen__handeln._Beiträge_aus_dem_Programm_KLIMOPASS.pdf

                Klimawandel als Herausforderung L Risiken verringern, Chancen nutzen, handeln Beiträge aus dem Programm KLIMOPASS Ulm Stuttgart Karlsruhe Freiburg Heidelberg Heilbronn Pforzheim Reutlingen Aalen Ravensburg 1900 1950 2000 2050 VORWORT Die Folgen des globalen Klimawandels sind auch in Baden-Württemberg spürbar. So ist die Durchschnittstemperatur zwischen 1881 und 2015 um 1,3° C gestiegen. Der Klimawandel bringt viele Herausforderungen mit sich. Des- halb ist engagierter Klimaschutz so wichtig, um die Treibhausgase zu begrenzen. Gleichzeitig müssen wir uns auch an die unvermeidbaren Folgen des Klimawandels anpassen. Das Klimaschutzgesetz von 2013 hat die beiden Säulen der Klimapolitik im Land verankert. Das Gesetz schreibt verbindliche Klimaschutzziele fest. Gegenüber dem Jahr 1990 sollen die Treib- hausgasemissionen bis 2020 um 25 % und bis 2050 um 90 % reduziert werden. Das Integrierte Energie und Klimaschutzkonzept (IEKK) zeigt dabei den Weg auf, wie die ehrgeizigen Ziele erreicht werden können. Gleichzeitig wurde die Entwicklung einer Strategie zur Anpassung an die unvermeidbaren Folgen des Klimawandels im Klimaschutzgesetz verankert. Die Auswirkungen des Klimawandels werden in Baden-Württemberg bereits seit den 1990er Jahren im Rahmen verschiedener Forschungs- vorhaben beobachtet. Im Jahr 2011 wurde schließlich das Programm „Klimawandel und modellhafte Anpassung in Baden-Württemberg“ (KLIMOPASS) ins Leben gerufen. Aufgrund des großen Themenspektrums der Klimaanpassung wurde KLIMOPASS als ressortübergreifendes Programm angelegt. Neben praxisnaher For- schung zu den Auswirkungen des Klimawandels auf das Land war die Erprobung erster Anpas- sungsmaßnahmen ein weiterer Schwerpunkt des Programms. Im Jahr 2016 wurde KLIMOPASS einer Evalu- ierung unterzogen, die die Grundlage für die Weiterentwicklung zu einem Förderprogramm bildete, das sich seitdem verstärkt mit der Um- setzung von Anpassungsmaßnahmen befasst. Insgesamt wurden im Zeitraum von 2011 bis 2016 über 80 Projekte mit etwa 7,5 Millionen Euro unterstützt. Alle Projekte wurden von einem ressortübergreifenden Projektrat sowie externen Expertinnen und Experten bewertet und ausgewählt und von der Landesanstalt für Umwelt Baden-Württemberg LUBW fachlich betreut und begleitet. In dieser Broschüre werden die Ergebnisse ausgewählter Projekte dargestellt. Franz Untersteller MdL Minister für Umwelt, Klima und Energiewirtschaft des Landes Baden-Württemberg VORWORT Die LUBW (Landesanstalt für Umwelt Baden- Württemberg) unterstützt seit mehr als acht Jah- ren die über 80 Projekte im Programm KLIMO- PASS bei dessen Konzeption, Organisation und Koordination. In KLIMOPASS wird der Klimawandel mit seinen Folgen untersucht. Darüber hinaus werden aber auch Möglichkeiten zur Anpassung in den Handlungsfeldern der Anpassungsstrate- gie des Landes erarbeitet. Mit den Projekten sollen anwendungsorientierte Fragestellungen bearbeitet werden, so dass die Ergebnisse helfen können, Anpassungsmaßnahmen zu entwickeln und auch umzusetzen. Beispielweise werden Fragen zur zukünftigen klimawandelgerechten Stadtplanung, zur Tierhaltung in der Landwirt- schaft oder zur Vulnerabilität der Wirtschaft des Landes bearbeitet. Bisher haben sich zahlreiche Partner aus Wissenschaft und Forschung beteiligt. Da sich der Klimawandel insbesondere auch auf der regionalen und lokalen Skala auswirkt und hier Anpassungsmaßnahmen direkt greifen können, spricht KLIMOPASS auch zunehmend die Ak- teurinnen und Akteure vor Ort an, insbesondere Kommunen. Für jedes Förderjahr erstellte die LUBW thematische Ausschreibungen, in deren Rahmen Projektanträge gestellt werden konnten. Hierfür wurde der aktuelle Forschungsstand und For- schungsbedarf von ihr ausgewertet. Zu den förderfähigen Themenfeldern zählten alle neun Handlungsfelder der Anpassungs- strategie. KLIMOPASS war somit sehr breit aufgestellt. Bei Bedarf wurden in Workshops mit Expertinnen und Experten aus Wissen- schaft und Praxis spezielle Schwerpunktthemen benannt. Der KLIMOPASS-Projektrat nahm die Aufgabe wahr, aus den vielen und fachlich teilweise sehr unterschiedlich gelagerten Projektanträgen geeignete KLIMOPASS-Projekte auszuwählen. Die LUBW organisierte das Verfahren zur Qualitätskontrolle dieser Anträge. Hierfür leitete sie ein Bewertungsverfahren mit externen Gutachterinnen und Gutachtern aus Praxis, Wissenschaft und Verwaltung und legte dem Projektrat die Ergebnisse vor. Die Entscheidung des Projektrats setzte die LUBW verwaltungs- technisch um und begleitete die laufenden Projekte fachlich, z. B. durch die Bereitstellung von Daten oder Unterstützung bei Projekt- veranstaltungen. Die Abschlussberichte der einzelnen Projekte wurden von ihr veröffentlicht und stehen im Publikationsdienst der LUBW zur Verfügung. Nach über acht Jahren KLIMOPASS sollen die Projekte mit dieser Broschüre einem breiteren Publikum kurz und verständlich präsentiert werden. Aus der großen Bandbreite und Vielzahl der Themen haben wir einige Projekte ausge- wählt und stellen Ihnen an dieser Stelle deren Ergebnisse in 24 Beiträgen vor. Für weitergehen- de Informationen möchte ich auf das Interne- tangebot der LUBW verweisen. Dort stehen die Berichte aller abgeschlossenen Projekte zur Verfügung. Eva Bell Präsidentin der Landesanstalt für Umwelt Baden-Württemberg 4 EINFÜHRUNG Klimafolgenforschung in Baden-Württemberg 6 Leitplanken der zukünftigen Klimaänderungen 8 Anpassungsstrategie 10 KLIMAFOLGEN / MONITORING Ein Klimamonitoring für die Modellregion Freiburg 12 Regionale Klimaänderungen und ihre Folgen 14 Klimaanpassung im Naturpark 16 GESUNDHEIT Wie warnt man am besten vor großer Hitze? 18 Besonders gefährlich: Das Hitzerisiko bei älteren Menschen 20 Wärmeres Klima – unerwünschte Stech mücken 22 STADT- / REGIONALPLANUNG Mit Mathematik zu einer nachhaltigen Stadt 24 Unsere Städte werden immer heißer – was tun? 26 Siedlungsverdichtung und Bauen im Zeichen der Klimaerwärmung 28 Abhilfe für Karlsruher Hitze-Hot-Spots 30 Wie anpassungsfähig ist eine Stadt? 32 Mit Grün gegen den Klimawandel 34 Begrünte Dächer – besseres Klima 36 Klimagerechte Landschaftsplanung: Das Beispiel Unteres Remstal 38 INHALT INHALT 5 NATURSCHUTZ / BIODIVERSITÄT Wie Flora und Fauna auf den Klimawandel reagieren 40 WASSERHAUSHALT Gibt es künftig noch genug Trinkwasser? 42 Wie verwaltet man den Wassermangel? 44 WIRTSCHAFT Wie verwundbar ist die Wirtschaft im Land? 46 LANDWIRTSCHAFT Werden wir künftig mehr ernten? 48 Bodenwasser: Mal zu wenig, mal zu viel Von Kirschen und Schweinen 50 52 FORSTWIRTSCHAFT Wald und Klima: Ohne Bewusstseinswandel geht es nicht 54 Wie klimagestresste Wälder besser wachsen 56 Wald im Wandel 58 RESÜMEE UND WEITERENTWICKLUNG 60 PROJEKTÜBERSICHT 62 IMPRESSUM & BILDNACHWEIS 71 INHALT 6 EINFÜHRUNG Klimafolgenforschung in Baden-Württemberg L Der Klimawandel bedeutet nicht nur neue Gefahren. Für einige Bereiche können sich auch Chancen ergeben. Doch welche Entwicklungen sind wahrscheinlich? Mögliche Antworten kann die Klimafolgen forschung geben. Baden-Württemberg hat früh begonnen, die Folgen des Klimawandels zu erforschen. Das bislang letzte Glied in der Kette der program- matischen Klimafolgenforschung ist das Programm KLIMOPASS. Es steht für „Klima- wandel und modellhafte Anpassung in Baden-Württemberg“. Am Beginn der Kette steht das Programm KLIWA „Klimaveränderung und Konsequenzen für die Wasserwirtschaft“. In KLIWA wird seit 1999 in Kooperation mit den Ländern Bayern und Rheinland-Pfalz sowie dem deutschen Wetterdienst gezielt der Wassersektor untersucht. Mit den folgenden Programmen KLARA (Klimawandel – Auswirkungen, Risiken, Anpassung) und „Herausforderung Klimawandel in Baden-Württemberg“ wurde der Blickwinkel auf weitere Handlungsfelder vergrößert. Hierzu zählen u. a. die menschliche Gesundheit, der Tourismus, die Land- und die Forstwirtschaft. Es wurde untersucht, welche klimatischen Ände- rungen zu erwarten sind und welche Verwund- barkeiten je Handlungsfeld eintreten können, beispielsweise die Zunahme an Hitzeereignissen. Für die menschliche Gesundheit bedeutet das die Verschärfung der thermischen Belastung. Eine besonders verletzliche Bevölkerungsgruppe sind die älteren Menschen, bei denen das Risiko hitzebedingter Todesfälle ansteigt. WISSENSLÜCKEN SCHLIESSEN Die Folgen des Klimawandels sind mittlerweile vielfach gut einschätzbar. Umso stärker rücken EINFÜHRUNG 7 Fragen nach geeigneten Anpassungsmaßnah- men und ihrer Umsetzung in den Vordergrund. KLIMOPASS wurde ins Leben gerufen, um genau an dieser Stelle anzusetzen. Es sollen anwendungsorientierte Fragestellungen bearbei- tet werden, die helfen, gezielt Anpassungsmaß- nahmen zu entwickeln und pilothaft umzuset- zen. Dementsprechend beschäftigen sich die Projekte beispielsweise damit, wie und wo sich unsere Städte aufheizen und was dagegen getan werden kann. Aber auch wie effektiv vor Hitze gewarnt werden kann, ist ein Thema. Möglich ist auch die Analyse positiver Effekte, zum Beispiel auf den landwirtschaftlichen Ertrag. Auch bei der Entwicklung und pilothaften Umsetzung von Anpassungsmaßnahmen können Akteurinnen und Akteure unterstützt werden. 81 PROJEKTE VON 2011 - 2016 Zwischen 2011 und 2016 wurden 81 Projekte bewilligt, die sich zehn Handlungsfeldern zu- ordnen lassen. Häufig weisen KLIMOPASS- Projekte Querbezüge auf und können deshalb mehreren Handlungsfeldern zugeordnet werden. Im Auftrag des Umweltministeriums organisiert und koordiniert die LUBW das Programm und begleitet die einzelnen Projekte fachlich. Die Förderentscheidung trifft ein interministerieller Projektrat. Vorangestellt ist ein Bewertungsver- fahren, das die Qualität der Projektanträge prüft. Das Ministerium stellt jährlich ein Förderbudget von rund einer Million Euro zur Verfügung. Im Durchschnitt konnte damit bisher fast die Hälfte der beantragten Projekte gefördert werden. EINMALIGES FÖRDERKONZEPT UND POSITIVER AUSBLICK Die thematische Vielfalt und kontinuierliche Fördermöglichkeit lassen KLIMOPASS auf Län- derebene als bislang einmalig erscheinen. Die hohe Zahl von insgesamt 174 Anträgen unter- streicht sowohl den bestehenden Forschungs- bedarf als auch die Bedeutung des Themas Klimaanpassung im Land. Das Ministerium hat daher beschlossen, KLIMOPASS ab dem Jahr 2018 eine Förderrichtlinie zu geben. Mit der Richtlinie wird das Programm verfestigt und stärker auf die Umsetzung von Anpassungsmaß- nahmen ausgerichtet. Weiterhin soll aber auch bedarfsorientiert eine Begleitforschung erfolgen. EINFÜHRUNG 8 EINFÜHRUNG Leitplanken der zukünftigen Klimaänderungen L Klimaforscherinnen und -forscher nutzen viele unterschiedliche Klima modelle, um das Klima der Zukunft zu berechnen. Jedes Modell besitzt Stärken und Schwächen bei der Simulation des komplexen Klimasystems. Deswegen werden in der Klimaforschung mittlerweile mehrere Modelle in einem „Ensemble“ eingesetzt, um möglichst solide Informationen über das Klima der Zukunft zu erhalten. PROJEKT Zukünftige Klimaentwicklung in Baden-Württemberg LUBW Berichts-ID 201308021 In einem Forschungsprojekt hat die LUBW 29 Simulationen regionaler Klimamodelle für einen nahen Zukunftszeitraum bis 2050 und für einen fernen Zukunftszeitraum bis 2100 ausge wertet. Für insgesamt 28 Klimakennzahlen, wie die Jahresmitteltemperatur, die Anzahl der Frosttage, die Anzahl der Sommertage, die Jah- resniederschlagssumme und die Anzahl der Tage mit Starkniederschlag, wurde die Entwicklung für die Zukunft untersucht. Durch den Einsatz vieler Modelle wird die Bandbreite aufgezeigt, innerhalb der die klimatische Entwicklung wahrscheinlich verlaufen wird. Diese Bandbreite stellt die Leitplanken der zukünftigen Klimaver- änderungen in Baden-Württemberg dar. IN JEDEM FALL Je nach untersuchtem Klimaelement variieren die Ergebnisse unterschiedlich stark, aber mit großer Sicherheit zeigen alle Modelle eine deutliche Wärmezunahme für die Zukunft. Die Jahresmitteltemperatur in Baden-Württemberg könnte demnach von heute 8,4 °C in der nahen Zukunft (2021 – 2050) um 0,8 °C bis 1,7 °C und EINFÜHRUNG 9 6 7 8 9 10 11 12 Te m pe ra tu r [° C ] Gemessene Werte; 30-jähriger gleitender Mittelwert, nach Daten des DWD berechnet Bandbreite des 30-jährigen Mittelwertes Untere Bandbreite Median Obere Bandbreite 19 00 19 05 19 10 19 15 19 20 19 25 19 30 19 35 19 40 19 45 19 50 19 55 19 60 19 65 19 70 19 75 19 80 19 85 19 90 19 95 20 00 20 05 20 10 20 15 20 20 20 25 20 30 20 35 20 40 20 45 20 50 20 55 20 60 20 65 20 70 20 75 20 80 20 85 20 90 20 95 21 00 Beobachtete Temperaturentwicklung Zukunftsszenario 2021 – 2050 1901 – 2015 2071 – 2100 AUF DEN PUNKT • Für solide Informationen werden mehrere Klimamodelle in „Ensembles“ eingesetzt. • Die Auswertung eines Ensembles mit 29 Simulationen bestätigt die weitere Erwärmung in Baden- Württemberg. • Bis Ende des Jahrhunderts ist im Landesschnitt ein Anstieg der Durchschnittstemperatur um 3,6°C auf 12°C möglich. • Die Anzahl der Sommertage wird deutlich ansteigen und kann sich bis zum Ende des Jahrhunderts verdoppeln. in der fernen Zukunft (2071 – 2100) um 2,5 °C bis 3,6 °C ansteigen. Anschaulicher wird es, wenn die Zunahme der Sommertage mit mindestens 25 °C betrachtet wird. Heute werden landesweit durchschnittlich 30 Tage gezählt. Für die nahe Zukunft muss im Landesschnitt mit zusätzlichen 4 bis 18 Tagen und in der fernen Zukunft mit 20 bis 44 Tagen gerechnet werden. Belastender für Mensch und Natur könnte die Entwicklung der Heißen Tage mit mindestens 30 °C sein. Diese steigen möglicherweise von heute landesweit durchschnittlich vier Tagen in der nahen Zukunft um einen bis neun Tage an. Bis 2100 wird von einem Anstieg zwischen fünf bis 28 zusätzlichen Tagen ausgegangen. Die Änderungen werden in den einzelnen Landes- regionen jedoch unterschiedlich stark ausfallen. Der Oberrheingraben und der Rhein-Neckar- Raum werden wohl auch weiterhin die wärmsten Regionen des Landes bleiben. Entwicklung der Durchschnittstemperatur in Baden-Württemberg bis 2015 und Bandbreite der möglichen zukünftigen Entwicklung bis 2100 (Quelle LUBW) EINFÜHRUNG 10 EINFÜHRUNG Anpassungsstrategie L Mit dem Klimaschutzgesetz Baden-Württemberg hat der Landes gesetzgeber auch der Anpassung an den Klimawandel einen gesetzlichen Rahmen gegeben. Die unvermeidbaren Auswirkungen sollen im Rahmen einer landesweiten Strategie durch vorsorgende Anpassungsmaßnahmen begrenzt werden. DER WEG ZUR ANPASSUNGS- STRATEGIE Im Juli 2015 hat die Landesregierung eine Strategie zur Anpassung an den Klimawandel in Baden-Württemberg verabschiedet, die sich mit den neun Handlungsfeldern Wald und Forstwirtschaft, Landwirtschaft, Boden, Natur- schutz, Wasserhaushalt, Tourismus, Gesundheit, Stadt- und Raumplanung sowie Wirtschaft und Energiewirtschaft befasst. Damit werden zahlreiche Bereiche des menschlichen Handelns und unserer Umwelt angesprochen, die durch den Klimawandel beeinflusst werden. Aufgrund dieser breiten Betroffenheit soll mit der Strategie ein gesamtgesellschaftlicher Anpassungsprozess angestoßen werden. Überflutete Straße mit Warnschild EINFÜHRUNG 11 Von Beginn an wurden Betroffene aus den ver schiedenen Handlungsbereichen in die Erstel lung der Strategie eingebunden. In einem ersten Schritt wurde gemeinsam mit den zu- ständigen Ressorts sowie Fachgutachterinnen und -gutachtern die klimainduzierte Verwund- barkeit (Vulnerabilität) der Handlungsbereiche aufge zeigt. Dabei standen Fragen im Mittelpunkt wie: Welche Auswirkungen hat Hitze auf ältere Menschen? Wie müssen die Städte der Zukunft aussehen? Welche Bäume müssen heute ge- pflanzt werden, die auch noch in 100 Jahren wachsen können? Wie werden sich Extremwet- terereignisse entwickeln und welche Vorkehrun- gen könnten getroffen werden? Weiter wurden Anpassungsziele erarbeitet und Maßnahmenvor- schläge auf einem Kongress diskutiert. Die wichtigsten Ergebnisse dieses Prozesses sind in der „Strategie zur Anpassung an den Klimawandel in Baden-Württemberg“ zusam- mengefasst. Für jedes Handlungsfeld werden die Auswirkungen des Klimawandels dargestellt und bis zu zehn Maßnahmenempfehlungen gegeben. UMSETZUNG In den kommenden Jahren gilt es nun, die Anpassungsstrategie mit Leben zu füllen. Die Umsetzung liegt dabei häufig nicht nur im direkten Handlungsbereich des Landes, sondern auch auf kommunaler und regionaler Ebene. Daneben gibt es Anpassungsmaßnahmen, die von privaten Akteurinnen und Akteuren um- gesetzt werden müssen, die aber vielfach durch staatliche Maßnahmen begleitet und unterstützt werden können. Das Land möchte durch Aus- weisung verschiedener Handlungsschwerpunkte die verschiedenen Akteurinnen und Akteure zur Anpassung zusammenbringen. Dazu zählen die Bewusstseinsbildung und die Sensibilisierung von Betroffenen. KLIMOPASS konnte dank des anwendungsbetonten Charakters des Programms eine wichtige Brücke von der Wissenschaft zur Praxis schlagen. Ein weiterer wichtiger Baustein ist das Monitoring zur Anpassungsstrategie, das mit einem ersten Bericht im Jahr 2017 und danach alle drei Jahre erfolgt. Es soll helfen, die Klimafolgen auf das Land darzustellen und möglichst zeitnah erfolgreiche und weniger erfolgreiche Ansätze in der modellhaften An- passung an den Klimawandel zu identifizieren. Nicht zuletzt wird auch weiterhin ein Schwer- punkt sein, die jeweiligen Akteurinnen und Akteure durch die Bereitstellung von Informatio- nen oder Fortbildungen zu sensibilisieren. EINFÜHRUNG 12 Ein Klimamonitoring für die Modellregion Freiburg L Ohne Anpassungsmaßnahmen wird der Klimawandel nicht zu bewältigen sein. Um aber den Erfolg solcher Maßnahmen beurteilen und gegebenenfalls nachjustieren zu können, bedarf es eines gezielten Monitorings. Wie das aussehen kann, zeigt ein Projekt am Beispiel der Modellregion Freiburg. WARUM REGIONALE ANPASSUNGS- STRATEGIEN? Der Klimawandel betrifft die verschiedenen Regionen Deutschlands in unterschiedlichem Maße. Entsprechend müssen Anpassungsmaß- nahmen an die veränderten klimatischen Bedin- gungen auf regionale Erfordernisse zugeschnitten werden. Baden-Württemberg stellt einen sehr vielfältigen Lebensraum dar. Daher ist eine an die jeweilige Region angepasste Strategie er- forderlich, die aus Bausteinen mit Maßnahmen unterschiedlicher Priorität besteht. Diese flexible Strategie muss zudem nachjustiert, also an künftige ökologische, ökonomische und soziale Entwicklungen angepasst werden können, die im Zuge des sich dynamisch ent- wickelnden Klimawandels zu erwarten sind. Eine wichtige Voraussetzung hierfür ist die kontinu- ierliche Erfassung klimarelevanter Indikatoren sowie ein Prüf- und Kontrollsystem für die vorgenommenen Anpassungsmaßnahmen. KLIMAFOLGEN/ MONITORING PROJEKT 1 Entwicklung eines Konzepts zum Monitoring von Klimafolgen und An- passungsmaßnahmen anhand eines Modellraums in Baden-Württemberg Albert-Ludwigs-Universität Freiburg, Professur für Landespflege LUBW Berichts-ID U13-W03-N12 PROJEKT 2 Etablierung eines regionalspezifi- schen Monitorings von Klimafolgen und Anpassungsmaßnahmen im Modellraum Freiburg / Dreisamtal Albert-Ludwigs-Universität Freiburg, Professur für Landespflege LUBW Berichts-ID U13-W03-N13 KLIMAFOLGEN/MONITORING 13 EIN VIELFÄLTIGER MODELLRAUM Wie ein solches Monitoring aussehen könnte, hat eine Arbeitsgruppe der Universität Freiburg untersucht: „Entwicklung eines Konzepts zum Monitoring von Klimafolgen und Anpassungs- maßnahmen anhand eines Modellraums in Baden-Württemberg“ hieß das Initialprojekt, dem sich ein Folgeprojekt zur Etablierung dieses regionalspezifischen Monitorings im Modell- raum Freiburg / Dreisamtal anschloss. Die ausge- wählte Region reicht vom Gipfel des Feldbergs entlang des Flusses Dreisam bis zur Rheinaue und repräsentiert eine Vielzahl landschaftlich und klimatisch unterschiedlicher Lebensräume. Diese sind einerseits aus Sicht des Naturschutzes und des Tourismus wertvoll, andererseits werden sie wirtschaftlich in vielfältiger Weise genutzt. Die wichtigste Basis für die Entwicklung des Monitoringsystems waren Experteninterviews vor allem mit Vertreterinnen und Vertretern der zuständigen Fachbehörden im Regierungs- präsidium Freiburg, in der Stadt Freiburg sowie in den Landratsämtern der Landkreise Breisgau-Hochschwarzwald und Emmendingen. Darüber hinaus gab es Gespräche mit dem Staatlichen Weinbauinstitut, der Forstlichen Versuchs- und Forschungsanstalt sowie der Schutzgemeinschaft Libellen. GUTES INDIKATORSYSTEM Neun Handlungsfelder haben die Autorinnen und Autoren der Studie bearbeitet, wozu Was- serhaushalt, Land- und Forstwirtschaft ebenso zählen wie Naturschutz und Biodiversität, aber auch innerstädtische Grünflächen, Gesundheit, Bevölkerung und Arbeitsschutz sowie der Tou- rismus. Von einer Vielzahl möglicher Indikatoren wurden bereits 72 in das regionalbezogene Monitoringsystem integriert. 36 Indikatoren wurden bisher verworfen, 184 werden noch geprüft. Dabei gibt es sowohl Einflussindikato- ren, die klimawandelbedingte Veränderungen aufzeigen, als auch Anpassungsindikatoren, mit denen sich die Wirkungen von Anpassungs- maßnahmen des jeweiligen Sektors beschreiben lassen. Im Gesundheitssektor gelten beispielsweise die Anzahl der Heißen Tage, der Tropennächte sowie der Tage mit schwüler Hitze als Ein- flussfaktoren. Auch Fallzahlen hitzeinduzierter Erkrankungen oder gar Todesfälle gehören dazu. Anpassungsindikatoren sind in diesem Sektor etwa das Funktionieren von Hitze-Frühwarn- systemen oder von baulichen Maßnahmen zur Hitzeminderung in öffentlichen Gebäuden. Teilweise bestanden im Untersuchungsgebiet bereits solche Systeme. So gibt es beispielsweise in der Forstwirtschaft ein institutionalisiertes, intensives Monitoring, zu dem auch die Waldzu- standsberichte gehören. Im Gesundheitswesen werden dagegen viele Daten erhoben, diese sind allerdings noch nicht in wünschenswerter Weise räumlich miteinander verknüpft. Im Bereich Wasserhaushalt gilt die Errichtung von Hochwas- serschutzmaßnahmen als Pflicht der Kommune. Als Anpassungsindikator im Rahmen eines Monitorings werden solche Maßnahmen häufig nicht erfasst. Das in Freiburg erarbeitete Monitoringsystem dürfte sich im Hinblick auf das methodische Vorgehen mit entsprechenden Anpassungen und gegebenenfalls weiteren Indikatoren gut auf andere Kommunen übertragen lassen. Die Erfahrungen und Ergebnisse aus der Erar- beitung dieses Projekts flossen in den ersten Monitoringbericht zum Klimaschutzgesetz Baden-Württemberg Teil 1 „Klimafolgen und Anpassung“ 2017 ein. Anpassungsindikator Wasserhaushalt: Stand Ausbau des technischen Hochwasserschutzes AUF DEN PUNKT • Das Fortschreiten des Klimawan- dels sowie der Erfolg von Klima- anpassungsmaßnahmen sollten im Zuge eines regionalen Monitoring- systems überwacht werden. • Ein solches System ist auch erfor- derlich, um gegebenenfalls bei den Maßnahmen nachjustieren zu können. • Das in der Modellregion Freiburg erarbeitete Indikatorsystem mit Einfluss- und Anpassungsindika- toren stellt eine gute Basis für das Monitoring dar. • Die Erkenntnisse lassen sich mit Anpassungen auch auf andere Regionen übertragen. KLIMAFOLGEN/MONITORING 14 ENSEMBLES BRINGEN EINE HÖHERE SICHERHEIT Die Entwicklung des Klimas hängt von vielen Faktoren ab. Zu diesen Faktoren gehören in jüngster Zeit vor allem die von den Menschen verursachten Treibhausgas-Emissionen. Deren Entwicklung wiederum hängt von der demo- graphischen, politischen und wirtschaftlichen Entwicklung ab, welche nur innerhalb gewisser plausibler Grenzen und auf dem derzeitigen Wissensstand abschätzbar ist und als Ergebnis sogenannte Klimaszenarien liefert. Daneben gibt es noch weitere, durch den Charakter des Klima- systems bedingte zufällige Faktoren, welche die Entwicklung des Klimas beeinflussen. Um diese Bandbreite möglicher Klimaentwicklungen zu erfassen, reicht eine Simulation nicht aus, viel- mehr muss eine ganze Reihe von Simulationen durchgeführt werden (ein sogenanntes Ensemble von Simulationen, siehe Beitrag „Leitplanken der zukünftigen Klimaänderungen“). Damit werden Aussagen über die Wahrscheinlichkeit einer vorausgesagten Klimaänderung möglich: Je größer die Ensemblekonsistenz, also die Über- einstimmung der einzelnen Ensemblemitglieder ist, desto sicherer ist die Aussage. Als Faustregel gilt, dass man bei einer Ensemblekonsistenz von über 50 Prozent von einer „wahrscheinlichen Änderung“ sprechen kann. PROJEKT Ensembles hoch aufgelöster regio- naler Klimasimulationen zur Analyse regionaler Klimaänderungen in Baden-Württemberg und ihre Aus- wirkungen Karlsruher Institut für Technolo- gie, Institut für Meteorologie und Klimaforschung LUBW Berichts-ID U41-W03-N13 Regionale Klimaände- rungen und ihre Folgen L Wenn man Anpassungsmaßnahmen an den Klimawandel planen und durchführen will, muss man wissen, welches Klima künftig auf die betreffende Region und ihre Bewohnerinnen und Bewohner zukommt. Einen solchen Blick in die Zukunft ermöglichen Simulationen mit numerischen Klimamodellen. KLIMAFOLGEN/ MONITORING KLIMAFOLGEN/MONITORING 15 KLIMASIMULATIONEN FÜR BADEN-WÜRTTEMBERG Für das Projekt „Ensembles hoch aufgelöster regionaler Klimasimulationen zur Analyse regio- naler Klimaänderungen in Baden-Württemberg und ihre Auswirkungen“ hat das Institut für Meteorologie und Klimaforschung (IMK-TRO) am Karlsruher Institut für Technologie (KIT) ein Ensemble von zwölf Simulationen mit der sehr hohen räumlichen Auflösung von 7 km, zugeschnitten auf unsere Region, berechnet. Verwendet wurde das regionale Klimamodell COSMO-CLM, das ein Modell für die Atmo- sphäre mit einem Boden-Vegetationsmodell kombiniert. Simuliert wurde die nahe Zukunft, also die Zeit zwischen 2021 und 2050. Um die Qualität der Simulationen einschätzen zu können, und um einen Vergleich für künftige Klimaentwicklung zu haben, wurde zusätzlich die jüngere Vergangenheit, d. h. der Zeitraum von 1971 bis 2000 gerechnet. WÄRMER UND MEHR STARKREGEN Die regional differenzierten Simulationen zeigen, dass im Land in naher Zukunft sowohl die mittleren Jahrestemperaturen als auch die minimalen und maximalen Tagestemperaturen steigen werden. Für das gesamte Bundesland kann es, jahreszeitlich variierend, zwischen etwa 0,5 und 1,5 °C wärmer werden – wobei die stärkste Zunahme im Spätsommer, Herbst und Winter stattfindet. Dazu passend zeigen die Szenarien mehr heiße und weniger kalte Extreme. Im Sommer und im Frühherbst wird den Berechnungen zufolge die solare Einstrah- lung – eine Kombination aus diffuser und direkter Strahlung – zunehmen und in der Zeit von Dezember bis Mai abnehmen. Die Nieder- schläge werden im Sommer leicht abnehmen, im Winter aber stärker zunehmen, so dass über das ganze Jahr gesehen eine leichte Zunahme zu erwarten ist. Ähnliches gilt auch für die klimati- sche Wasserbilanz. Insgesamt zeichnen sich aber bei Mittelwerten von Parametern wie Nieder- schlag, Bodenfeuchte und Windgeschwindigkeit keine großen Änderungen ab. Änderungen fin- den sich dagegen bei extremen Niederschlägen, die in naher Zukunft deutlich häufiger werden können, und auch die Kombination aus heißen und trockenen Extremwetterperioden wird den Menschen verstärkt zu schaffen machen. AUF DEN PUNKT • In Klimaszenarien werden auf Grundlage von Annahmen zur künftigen Entwicklung der Treib- hausgaskonzentration mögliche klimatische Zustände für die Zukunft mit Klimamodellen be rechnet. Bei Ensemble-Berech - nungen wird eine Reihe von Simulationen durchgeführt, um die Bandbreite der möglichen Klimaän- derungen zu erfassen. • Die Qualität der Simulationen wird durch den Vergleich mit den Klimabeobachtungen der jüngeren Vergangenheit (1971 – 2000) überprüft. • Für Baden-Württemberg steht nun ein Ensemble von Klimasimu- lationen mit einer räumlichen Auflösung von 7 Kilometern für die beiden Zeiträume 1971 – 2000 und 2021 – 2050 zur Verfügung. • Die Simulationen zeigen für die nahe Zukunft (2021 – 2050) Zunah- men der Jahresmitteltemperaturen sowie der Tagesmaxima und -minima der Temperatur. • Deutlich häufiger werden extreme Niederschläge sowie, vor allem in tieferen Lagen, die Kombination aus heißen und trockenen Extrem- wetterperioden auftreten. Änderung der mittleren Anzahl von Heißen Tagen pro Jahr (Tagesmaximaltemperatur > = 30°C) zwischen 1971 - 2000 und 2021 - 2050 (Quelle: Karlsruher Institut für Technologie) Anzahl Tage 9 8 7 6 5 4 3 2 1 0 KLIMAFOLGEN/MONITORING 16 Klimaanpassung im Naturpark L Ein Naturpark lebt vom Miteinander von Natur und wirtschaftendem Mensch, der diese Landschaft geprägt hat. Sollen solche Regionen auch in Zeiten des Klimawandels erhalten werden und touristisch attraktiv bleiben, sind Anpassungs- maßnahmen an die sich ändernden Lebensbedingungen unerlässlich. REIZVOLLE LANDSCHAFT Rund 400 000 Hektar Fläche umfasst der Na- turpark Südschwarzwald und ist damit einer der größten Schutzflächen dieser Art in Deutsch- land. Sicher ist, dass sich durch den Klimawan- del auch in dieser Region die Bedingungen für Land- und Forstwirtschaft sowie Naturschutz und Tourismus ändern werden. Was aber kann man tun, um trotz der sich bereits abzeich- nenden Veränderungen diese strukturreiche Landschaft mit Wald, extensiv genutzten Weide- flächen und Mähwiesen zu erhalten? Darüber hat sich ein Team aus Forscherinnen und Forschern in enger Zusammenarbeit mit dem Naturpark Südschwarzwald und sechs land- und forstwirtschaftlichen Betrieben Gedanken gemacht. Erklärtes Ziel war, „Erkenntnisse aus den Handlungsfeldern Boden, Naturschutz, Wald, Landwirtschaft auf den Naturraum und die dortigen land- und forstwirtschaftlichen Be- triebe zu übertragen“ (Projektbericht, S. 2) – und darauf aufbauend, eine integrierte Klimaanpas- sungsstrategie für den Naturpark zu entwickeln. PROJEKT Landschaft im Klimawandel – Anpassungsstrategie für den Naturpark Südschwarzwald Naturpark Südschwarzwald e.V. LUBW Berichts-ID U83-W03-N24 KLIMAFOLGEN/ MONITORING KLIMAFOLGEN/MONITORING 17 DAS GEFÄHRDUNGSPOTENZIAL BEWERTEN Um die Folgen des Klimawandels bewerten zu können, muss man eine ganze Reihe von Fakto- ren heranziehen. Dazu zählen typische klima- tische Parameter wie Durchschnittstemperatur, Spät- und Frühfrostgefahr, Heiße Tage, Stark- regen und Dürreperioden. Aber auch Faktoren wie Bewirtschaftungsweise, Ertrag, Produkt- qualität und die Risiken durch Schädlinge wie Pilze, Insekten und andere Schaderreger, sind zu berücksichtigen. Hinzu kommen der Stand- ort – Höhe, Hangneigung, Beschaffenheit und Speicherfähigkeit der Böden – sowie die mit der Lage verbundenen klimatischen Grundbedin- gungen. Damit ergeben sich für die einzelnen Betriebe ganz individuelle Bewertungen. So sind zum Beispiel im Zuge des Klimawandels bei einem Waldgebiet ein zunehmender Hitze- und Trockenstress für Fichtenbestände im Hoch- sommer und ein damit verbundener erhöhter Befallsdruck, durch Schadinsekten zu erwarten. Bei Grünlandflächen zeichnen sich dagegen neben negativen Folgen auch durchaus posi- tive Effekte ab: So wird die Produktivität durch höhere Temperaturen und eine längere Vege- tationszeit zunehmen. Andererseits wird der Befallsdruck durch Mäuse und Pilze, z. B. Schneeschimmel wachsen, was sich negativ auf Ertrag und Qualität auswirken wird, genauso wie Trockenheit im Sommer und mehr Nässe im Winter. WIE BEDROHT SIND DIE BETRIEBE? Der außergewöhnlich trockene Sommer im Untersuchungszeitraum 2015 hat auch die land- und forstwirtschaftlichen Betriebsleiterinnen und Betriebsleiter für die Folgen des Klima- wandels sensibilisiert. Und das nicht ganz zu unrecht: Über alle Betriebe und Nutzungsarten hinweg zeigt sich für vier von sechs Betrieben eine stärkere Gefährdungstendenz. Die größ- ten Gefahren durch Hitzestress, Sonnenbrand, erhöhtem Schädlingsdruck und anderen Folgen der Klimaerwärmung ergaben sich dabei für den Beeren- und Obstbau. Auch beim Getreidean- bau – außer beim Dinkel – sowie beim Waldbau – Risikofaktor Fichte – wurden Gefährdungs- potenziale festgestellt. Demgegenüber könnten Ackerflächen und Wiesen von verlängerten Vegetationsperioden und höheren Temperaturen profitieren. Auch wenn zu bedenken ist, dass die Studie nur 431 Hektar (0,1 Prozent) der Naturparkfläche ab- deckt, so dürfte sie doch Signalwirkung für den gesamten Naturpark Südschwarzwald haben. Da die Land- und Forstwirtschaft in dieser Kultur- und Naturregion eine prägende Wirkung hat, ist es wichtig, sie zu erhalten – und damit auch die Ertragskraft der Betriebe. Daher geben die Autorinnen und Autoren der Studie zu beden- ken, dass auch in einem Naturpark ertrags- steigernde Bewirtschaftungsformen wichtig werden können. Dazu zählen das Experimen- tieren mit neuen Arten und Sorten, wie mit dem Rhabarberanbau beispielhaft demonstriert werden konnte. Auch die Bewässerung von Wiesen sowie eine partielle Umnutzung von Flächen können eine wichtige Rolle in der Zukunft spielen. Ihre Schlussfolgerung: „In dem Bestreben, die Betriebe vor dem Hintergrund des Klimawandels zu stärken, sollte eine wichtige Komponente der Anpassungsstrategie des Naturparks Südschwarzwald an den Klima- wandel liegen“ (Projektbericht, S. 80). Teil der Untersuchung: Höfe mit Mutterkuhhaltung auf 1.000 m Meereshöhe AUF DEN PUNKT • Der Klimawandel wird auch für den Naturpark Südschwarzwald deutliche Folgen haben. • Für die land- und forstwirtschaft- lichen Betriebe ist zumeist eine moderate, in Einzelfällen stärkere Gefährdung zu erkennen. Teilweise gibt es auch Verbesserungen. • Eine gute Ertragskraft der Betriebe ist eine wesentliche Vorausset- zung, um die typische Naturland- schaft Südschwarzwald zu erhalten. • Mögliche ertragssteigernde (Klima- anpassungs-)Maßnahmen sind der Anbau neuer Sorten und Arten und die Bewässerung. KLIMAFOLGEN/MONITORING 18 Hitzefl yer Stuttgart mit Gesundheitstipps und Verhaltenshinweisen bei Hitze (Quelle: Landeshauptstadt Stuttgart) Wie warnt man am besten vor großer Hitze? L Durch die Kessellage ist Stuttgart sehr windarm. Zusammen mit der dichten Bebauung führt dies im Sommer häufi g zu großer Hitze belastung. Die Landes- hauptstadt machte sich deshalb schon früh Gedanken, wie man die Bevölkerung am besten vor einer drohenden Hitzewelle warnen kann. Doch dazu muss man die Menschen auch auf den richtigen Wegen erreichen. DER HITZESOMMER 2003 UND DIE FOLGEN Die große Hitzewelle im Jahr 2003 hat auch in Stuttgart zu einem Umdenken geführt: Bei rechtzeitiger Warnung und geeigneten Gegen- maßnahmen hätte es damals vermutlich weniger Hitzetote gegeben. In der Folge entwickelte die Landeshauptstadt als eine der ersten Städte ein Klimawandel-Anpassungskonzept. Besonders wichtig dabei: die Bevölkerung rechtzeitig zu warnen, wenn extrem heiße Tage drohen. Mit dem Projekt „Optimierung der Hitzewarnung in Stuttgart (HITWIS)“ hat die Abteilung Stadtklimatologie des städtischen Umweltamtes GESUNDHEIT PROJEKT Optimierung der Hitzewarnung in Stuttgart (HITWIS) Landeshauptstadt Stuttgart, Amt für Umweltschutz, Abteilung Stadtklimatologie LUBW Berichts-ID U50-W03-N11 GESUNDHEIT 19 das bereits bestehende Konzept überprüft und Verbesserungen angeregt. WIE ERREICHT MAN DIE MENSCHEN? Eine Umfrage der Stadtklimatologinnen und -klimatologen ergab, dass Krankenhäuser und Seniorenheime auf Hitzewellen inzwischen recht gut vorbereitet sind. Hingegen gibt es im Schul- bereich keine allgemeinen Richtlinien. Beson- ders problematisch ist dies für ältere allein- stehende Menschen: Sie sind nur schwer zu erreichen, stellen aber eine besondere Risi ko- gruppe dar, die zudem wegen der demographi- schen Entwicklung noch größer werden wird. Auf diesem Gebiet, so ergab das Projekt, sollte in Zukunft mehr getan werden, etwa ein Hitze- telefon für alleinstehende Seniorinnen und Seni- oren organisieren und betreuen. Zudem sind gut bestehende Wärmesysteme wie das Hitze- warnsystem des Deutschen Wetterdienstes in der Bevölkerung noch nicht genügend bekannt. INFORMATION AUF ALLEN KANÄLEN Gedruckte Flyer und Infobroschüren sind ein bewährtes Mittel, Menschen auf Gefahren und Zusammenhänge aufmerksam zu machen. Vor allem im Hinblick auf die Risikogruppe der – größtenteils nicht internetaffi nen – Älteren wird dieses Kommunikationsmittel auch in Zukunft unerlässlich sein. Andere Bevölkerungsgruppen lassen sich mit CityCards erreichen, die kurze Hitze-Informationen liefern und beispielsweise in Restaurants und Bars ausliegen. Auf elek- tronischem Wege liefert die Hitze-Homepage AUF DEN PUNKT • Zielgruppenspezifi sche Hitze- warnungen auf unterschiedlichen Medienkanälen erreichen viele Menschen. • Schwierig erreichbar sind ins- besondere ältere alleinstehende Menschen. • Ein kommunales Kompetenzteam sowie ein Netzwerk „Hitze“ sind wichtige Voraussetzungen für im Internet (www.stuttgart.de/hitze) aktuelle Informationen. Social Media wie Facebook, Instagram und Twitter wie auch lokal angepasste Hitze-Apps für Smartphones erreichen immer mehr Menschen. Wichtig ist auch das große Display am Pragsattel, einer der am stärksten befahrenen Kreuzungen in Stuttgart, das alle Autofahrerinnen und Autofahrer auf gefährliche Hitzetemperaturen aufmerksam macht. OHNE KOMPETENZ-NETZWERK GEHT ES NICHT Eine wichtige Voraussetzung, dass dies alles auch umgesetzt wird und Hitzewarnungen recht zeitig an die Bevölkerung ergehen, ist der Aufbau ei- nes zunächst kommunalen Kompetenzteams und dann eines Netzwerkes „Hitze“. Dazu gehören kommunale und externe Institu tionen, wie etwa der Deutsche Wetterdienst, aber auch Pfl ege- dienste und Stadtteilorganisationen. Allerdings ergab die Untersuchung, dass die Umsetzung manch einer wünschenswerten, aber komplexen Maßnahme, gar nicht so einfach ist, weil sich die Zusammenarbeit verschiedener Institutionen schwierig gestaltet. Gleichwohl lohnt sich der Aufwand: Schließlich geht es um Menschen- leben. Stuttgart jedenfalls ist gewillt, dies zu tun – und hat aus den bisher gewonnenen Erkenntnissen eine Liste mit Empfehlungen für andere Städte zusammengestellt. Beson- ders wichtig dabei sei, so die Autorinnen und Autoren der Studie, „Hitzeinformationen und Hitzewarnungen zielgruppenspezifi sch weiterzu- geben“ (Projektbericht, S. 6). Smartphone-App zur Hitzewarnung in Stuttgart (Quelle: Landeshauptstadt Stuttgart) GESUNDHEIT 20 Besonders gefährlich: Das Hitzerisiko bei älteren Menschen L Die Menschen werden immer älter, mögliche Hitzeperioden wegen der Klimaerwärmung häufiger. Umso wichtiger wird es, dass ältere Menschen zum Beispiel auch in Einrichtungen des Betreuten Wohnens bei Hitze optimal versorgt werden. Aber wie lässt sich das erreichen? VIER TEILPROJEKTE Klar, bei heißem Wetter zieht man sich luftig an. Und man trinkt viel. Aber machen das ältere Menschen auch tatsächlich? Dieser Frage ging eine Arbeitsgruppe der Robert-Bosch-Gesell- schaft für medizinische Forschung, die am Stutt- garter Robert-Bosch-Krankenhaus tätig ist, nach. Um die individuellen Risikofaktoren bei Hitze herauszufinden, konnten im Sommer 2015 rund 80 Menschen mit einem Durchschnittsalter von 81 Jahren, die in insgesamt zehn Einrichtungen des Betreuten Wohnens leben, für das Projekt gewonnen werden. Sie wurden nach ihrem Verhalten bei Hitze befragt und in ein medizini- sches Untersuchungsprogramm aufgenommen. Darüber hinaus sollte das Projekt „Risiken von Raumtemperatur bei Hitze für ältere Menschen in Stuttgart“ weitere Erkenntnisse liefern: Wie kann man Seniorenheime klimatisch besser bauen und ausrüsten? Was können die Einrich- tungen bei Hitze tun? Und wie hilfreich sind Kühlwesten? BELASTENDE HITZE Das Fazit der Studie ist eindeutig: „Insgesamt ist festzustellen, dass die zwei Hitzewellen im Juli PROJEKT Risiken von Raumtemperatur bei Hitze für ältere Menschen in Stuttgart Robert-Bosch-Gesellschaft für medizinische Forschung mbH LUBW Berichts-ID U50-W03-N13 GESUNDHEIT GESUNDHEIT 21 und August 2015 die befragten Bewohner des Betreuten Wohnens in Stuttgart sehr belastet haben“ (Projektbericht, S. 41). Offenkundig ist, dass neben direkten gesundheitlichen Beschwerden die älteren Menschen körperlich weniger aktiv sind und die „soziale Teilhabe“ deutlich abnimmt. Schwächere Personen, die durch eine geringere Gehge schwindigkeit iden- tifiziert werden können, sind hier besonders be- troffen (siehe Grafik). Abgeschlagenheit und An- triebslosigkeit – das waren häufige Beschwerden. Trotz der Hitze empfand nicht einmal die Hälfte der Befragten mehr Durst. Und nur etwa ein Drittel nannte vermehrtes Trinken als Maß- nahme gegen Hitze. Umso wichtiger ist es, dass Angehörige und Betreuungspersonal immer wieder darauf hinweisen, doch bei Hitze mehr zu trinken. Dabei können Trinkprotokolle hilf- reich sein, um die tatsächlich getrunkene Flüssig- keitsmenge zu dokumentieren. Weiterhin hat die Studie ergeben, dass schwä- chere Personen bei Hitze schwerer von einem Stuhl aufstehen können und mehr Mühe haben, das Gleichgewicht zu halten – womit gerade auch bei Hitze die Sturzgefahr wächst. Interes- sant ist, dass der Blutdruck mit zunehmenden Temperaturen sinkt. Dies stellt aber in vielen Fällen keine Belastung dar. Dabei hat die Studie gezeigt, dass Blutdruck regulierende Medika- mente generell zur Stabilisierung des Blutdrucks auch bei Hitze beitragen. Eine Anpassung der Medikation bei Hitze wird nach Möglichkeit empfohlen. WAS DIE SENIORENHEIME TUN KÖNNEN Inzwischen dürften die meisten Einrichtungen dank der Warnungen des Deutschen Wetter- dienstes sowie kommunaler Institutionen wissen, wenn eine Hitzewelle im Anmarsch ist. Doch die Konsequenzen lassen offenbar noch oft zu wünschen übrig: „Zusammenfassend ist zu vermuten, dass im Betreuten Wohnen kaum strukturierte Handlungspläne für den Umgang mit einer Hitzewelle existieren“, heißt es in der Studie. Damit aber besteht ein „erhebliches Potenzial zur Optimierung“ (Projektbericht, S. 52). Wichtig wäre zum Beispiel, einen Verant- wortlichen zu benennen, der bei einer Warn- meldung einen Aktionsplan in Gang setzt. Dieser sollte auch sicherstellen, dass jede Bewohnerin und jeder Bewohner erreicht wird, beispielsweise über Hauspost. Weiteres Potenzial zur Optimierung der Situation älterer Menschen im Betreuten Wohnen sind bauliche Maß- nahmen. Dazu zählen klimatisierte Räume zur Hitzeentlastung, die von jeder Bewohnerin und jedem Bewohner genutzt werden können – die aber nach den vorliegenden Erkenntnissen noch weitgehend fehlen. Hilfreich sind auch Vorrich- tungen, mit denen sich die Wohnräume bei Hitze automatisch beschatten und lüften lassen. HELFEN KÜHLWESTEN? Im Rahmen der Studie wurden versuchsweise 20 Kühlwesten ausgewählten Einrichtungen als Akutmaßnahme zur Verfügung gestellt. Fazit: Die Westen senken die Köpertemperatur um durchschnittlich 0,2 °C, sind also wirksam. Auch die Westenträgerinnen und -träger waren in den meisten Fällen zufrieden, bemängelten allerdings teilweise, dass die Westen zu schwer seien und nicht lange genug kühlen würden. Für viele hitzegeplagte Seniorinnen und Senioren sind die Westen somit bei entsprechender Einweisung eine Möglichkeit, akute Beschwerden zu lindern. Allerdings wirkt diese Maßnahme nur kurzfris- tig und kann im Zweifelsfall eine zusätzliche ärztliche Betreuung nicht ersetzen. AUF DEN PUNKT • Hitze belastet ältere Menschen in vielfältiger Weise. • Oft trinken ältere Menschen nicht genug – auch weil trotz Hitze das Durstgefühl fehlt. • Einrichtungen für Betreutes Wohnen sollten strukturierte Hand - lungspläne bei Hitze entwickeln und umsetzen. • Kühlwesten können bei Hitze in akuten Fällen helfen. 12 14 16 18 S oz ia le T ei lh ab e (W H O -S co re ) alle höhere Geschwindigkeit niedrigere Geschwindigkeit Temperaturbereich (°C) Soziale Teilhabe älterer Menschen und Beziehung zu Gehgeschwindigkeit und Temperatur (Quelle: Robert-Bosch-Gesellschaft für medizinische Forschung mbH) 27 GESUNDHEIT 22 Wärmeres Klima – unerwünschte Stech- mücken L Milde Winter und warme Sommer: So liebt es die Asiatische Tigermücke. Trockene Sommer gefallen der Japanischen Buschmücke sehr. Im Zuge der Klimaerwärmung haben sich beide bereits bei uns eingenistet. Damit aber wächst die Gefahr, dass sie neue Krankheiten übertragen. EXOTISCHE KRANKHEITSÜBERTRÄGER Im Jahr 2000 ist die Japanische Buschmücke (Ochlerotatus japonicus) in Europa angekom- men, höchstwahrscheinlich mit Zierpflanzen oder Blumenvasen aus China. Seither hat sie sich auch in Baden-Württemberg ausgebreitet. Ebenfalls auf dem Vormarsch ist die Asiatische Tigermücke (Aedes albopictus), die sich inzwi- schen im Land fortgepflanzt und damit etabliert hat. Jedenfalls wurden im Frühjahr 2016 in Freiburg als auch in Heidelberg erstmals Eier gefunden, aus denen Larven geschlüpft sind. Nun sind Stechmücken allein schon wegen der unangenehmen Stiche eine Plage. Bei diesen beiden Moskitoarten aber kommt ein weit größeres Problem hinzu: Sie können gefähr- liche Krankheiten übertragen. So überträgt die Tigermücke Viren, die für Dengue- sowie Chikungunya-Fieber-Ausbrüche auch in Europa verantwortlich gemacht werden – Krankheiten, gegen die es keine Medikamente gibt. Die Buschmücke wiederum kann unter anderem das West-Nil-Virus und verschiedene Erreger von Gehirnentzündungen übertragen. PROJEKT 1 Untersuchung der Einschleppung, Ausbreitung und Bekämpfung des Japanischen Buschmoskitos Gesellschaft zur Förderung der Stechmückenbekämpfung e.V. - GFS LUBW Berichts-ID U51-W03-N12 PROJEKT 2 Klimatische und infrastrukturelle Risikoanalyse für kommunale Maßnahmen in Bezug auf die Etablierung von Aedes albopictus in Baden-Württemberg Gesellschaft zur Förderung der Stechmückenbekämpfung e.V. - GFS LUBW Berichts-ID U50-W03-N15 GESUNDHEIT GESUNDHEIT 23 DEN STECHMÜCKEN AUF DER SPUR Beide Moskitoarten stellen somit eine bedeu- tende Gefahr für die Gesundheit der Menschen dar. Grund genug, sich mit ihnen intensiv zu beschäftigen, wie das die Gesellschaft zur Förderung der Stechmückenbekämpfung e.V. (GFS) tut. „Untersuchung der Einschleppung, Ausbreitung und Bekämpfung des Japanischen Buschmoskitos“, heißt das Projekt, dem sich die Studie „Klimatische und infrastrukturelle Risikoanalyse für kommunale Maßnahmen in Bezug auf die Etablierung von Aedes albopictus in Baden-Württemberg“ anschloss. Dabei werden nicht nur die Fundorte der exotischen Mücken kartiert, sondern es wurde auch nach Möglich- keiten gesucht, diese lästigen und potenziell gefährlichen Insekten erfolgreich zu bekämpfen und sie so gut wie möglich in Schach zu halten. FRIEDHÖFE BELIEBT Nachdem früher nur zwei getrennte Populatio- nen des Buschmoskitos in Baden-Württemberg bekannt waren, wurde nun im Rahmen des Projekts eine mittlerweile großflächige Verbreitung im Land nachgewiesen. So ist nun der gesamte Schwarzwald betroffen. Die enorme Verbreitungsgeschwindigkeit des Moskitos ent- spricht der Geschwindigkeit der Verbreitung in den USA. Allerdings braucht der Buschmoskito nicht unbedingt Wärme. Wichtiger sind offen- bar Veränderungen beim Niederschlag, wobei insbesondere trockene Sommer vorteilhaft für die Buschmücken sind. Zudem gehören ganz offensichtlich Friedhöfe zu den attraktivsten Lebensräumen für diese Mücken – genauer die Wasserbecken sowie die Grabvasen, in die sie bevorzugt ihre Eier ablegen. Im direkten Siedlungsbereichen scheint sich die Mücke aller- dings nicht wohl zu fühlen, stark bebuschte und bewaldete Gebiete sind ihr lieber. Ferner sind auch Regentonnen beliebt, um dort Eier abzule- gen. Sicher ist, dass die Buschmücke inzwischen weite Teile Baden-Württembergs erobert hat – was für die Tigermücke (noch) nicht gilt: Sie ist nämlich, anders als die Buschmücke, auf das milde Klima des Oberrheingrabens angewiesen. DER KAMPF GEGEN DIE MÜCKEN Um den traditionellen Moskitoplagen Herr zu werden, haben die Biologinnen und Biologen in den vergangenen Jahren eine Reihe von Bekämpfungsmaßnahmen entwickelt. Die Japa- nische Buschmücke lässt sich momentan wohl am besten mit Bti-Tabletten, einem bewährten biologischen Abwehrpräparat, in Schach halten, das auf der für Mückenlarven tödlichen Wirkung des Bacillus thuringiensis israelensis beruht. Im Rahmen des Projekts wurde aber noch eine andere interessante Methode erfolgreich getestet: Wenn man Friedhofsvasen mit Kupferspray einsprüht oder einfach Kupfermünzen in die Vase gibt, beispielsweise eine fünf Cent-Münze, haben die dort lebenden Mückenlarven kaum eine Überlebenschance. Und die im Spätsom- mer in Wasserbecken abgelegten Eier lassen sich durch gründliche Reinigung der Behälter vernichten. Teure Aktionen mit organisierten Bekämpfungsteams halten die Expertinnen und Experten derzeit aufgrund der nur geringen Populationsdichten der Buschmücken innerhalb der Siedlungsbereiche nicht für erforderlich. AUF DEN PUNKT • Milde Winter und warme Sommer begünstigen die Ausbreitung exotischer Stechmücken in Baden-Württemberg. • Die Japanische Buschmücke und die Asiatische Tigermücke können gefährliche Krankheiten übertragen und sollten daher frühzeitig be- kämpft werden. • Japanische Buschmücken pflanzen sich vor allem in kleinen Wasser - behältern auf Friedhöfen fort. • Gegen die Buschmücken helfen Bti-Präparate sowie das Besprühen von Grabvasen mit Kupferspray; Wasserbecken sollten im Winter gereinigt und Regenfässer dicht abgedeckt werden. Kupfer in Blumenvasen oder Regentonnen zerstört effektiv die Mückeneier GESUNDHEIT 24 Mit Mathematik zu einer nachhaltigen Stadt L Immer mehr Menschen leben in Städten. Umso wichtiger ist es, diese dicht besiedelten Gebiete an den Klimawandel anzupassen – und zudem den Energie- bedarf der Gebäude für das Heizen und Kühlen zu senken. Dazu müssen aber zunächst die bestehenden Stadtstrukturen möglichst detailgenau erfasst werden. BELIEBTE STÄDTE Der Trend zur Stadt wird ungebrochen bleiben: Laut Weltklimarat IPCC werden im Jahr 2030 mehr als die Hälfte der Menschen in Städten wohnen. Sie werden für 75 Prozent des Ener- gieverbrauchs und für 80 Prozent der gesamten Treibhausgasemissionen verantwortlich sein. Ein erheblicher Teil dieser Energie wird für das Heizen und Kühlen von Gebäuden benötigt. Andererseits beeinflussen die Gebäudestruk- turen ganz wesentlich das Stadtklima, für das beispielsweise Wärmeinseln typisch sind. NEUE METHODISCHE ANSÄTZE Umso wichtiger ist es, diese dicht besiedelten Gebiete an den Klimawandel anzupassen – und zudem den Energiebedarf der Gebäude für das Heizen und Kühlen zu senken. Dazu müssen aber zunächst einmal die Zusammenhänge zwischen dem Außen- und Innenraumklima detailgenau erfasst werden. Für die Stadtplanung ist es wichtig, eine Vorstellung zu bekommen, welche Wechselwirkungen zwischen dem künf- tigen Energiebedarf von Gebäuden und dem umgebenden Stadtklima im Wandel verantwort- lich sind und wie diese durch planungsrelevante Entscheidungen beeinflusst werden. Dies ist das übergreifende Ziel des Projekts „Klimawandel, STADT-/ REGIONALPLANUNG PROJEKT Klimawandel, Stadtklima und Gebäudeenergieeffizienz: Wechsel- wirkungen und Handlungskonzepte für eine nachhaltige Stadt – KLISGEE TU Dortmund, Fakultät Architektur und Bauingenieurwesen LUBW Berichts-ID U83-W03-N27 STADT-/REGIONALPLANUNG 25 Stadtklima und Gebäudeenergieeffizienz: Wech- selwirkungen und Handlungskonzepte für eine nachhaltige Stadt – KLISGEE“. Für die ganzheitliche Betrachtung haben die Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Dortmund eine neue Methode verwendet, die zwei physikalisch basierte Rechenmodelle zusammen mit sta- tistischen Verfahren und räumlich gestützten Techniken kombiniert: Mit dem Stadt-Ener- gie-Balance-Modell TEB lassen sich Änderungen des städtischen Mikroklimas ermitteln und mit dem Gebäude- und Anlagen-Simulations- programm TRNSYS der Energiebedarf von Gebäuden errechnen und damit Aussagen über das Innenraumklima machen. Ferner wurde bei der Verarbeitung der Daten die statistische Versuchsplanung DOE für die Optimierung der untersuchten Stadtstrukturen und Gebäude angewandt. Auch geografische Informationssys- teme kamen, insbesondere bei der planerischen Darstellung der Ergebnisse, zum Einsatz. Am Beispiel der Stadt Stuttgart wurden zunächst die thermischen Veränderungen für das gesamte Stadtgebiet berechnet, die sich durch die städtebauliche Struktur und den Klimawandel ergeben. Dann wurden die Energiekennwerte der einzelnen Gebäude sowie von ganzen Gebäudeblöcken für das Heizen und Kühlen ermittelt. Die Rechnungen wurden sowohl für die klimatischen Randbedingungen von 1991 bis 2000 als auch für die projizierten klimatischen Randbedingungen für den Zeitraum 2041 bis 2050 durchgeführt. STRASSENSCHLUCHTEN HEIZEN SICH AUF Die Mikroklimasimulationen mit TEB zeigen, dass sich die Straßenschluchten im Zeitraum bis 2050 um bis zu 2 °C aufheizen können, wobei der Durchschnitt bei 0,87 °C liegt. Interessant ist, dass die Erwärmung vor allem in den Nacht- stunden spürbar wird, was auf Wärmeinseln hin- weist. Im Gegensatz dazu sind die Stadtcanyons in den Mittagsstunden kühler als die Umgebung, weil die Gebäude Schatten werfen. Bei lockerer und mittlerer Bebauung sind diese Hitze- und Kühleffekte weniger deutlich ausgeprägt. Somit zeigt sich, dass die städtebauliche Dichte das Mikroklima stark beeinflusst – was vor allem in der Stadtplanung zu berücksichtigen ist. Ferner spielt die Abwärme aus dem Verkehr eine wesentliche Rolle bei der Entstehung wärmerer Mikroklimazonen. BESONDERS WICHTIG – DIE QUALITÄT DER WÄRMEDÄMMUNG Die vorliegenden TRNSYS-Berechnungen machen es möglich, den Energiebedarf eines jeden einzelnen Gebäudes für Heizung und Kühlung zu ermitteln. Allerdings wurden die Ergebnisse aus Datenschutzgründen nur auf der Ebene von Baublöcken dargestellt. Aufgrund der Klimaerwärmung wird generell und insbesondere in den dicht bebauten Innen- städten künftig weniger Energie zum Heizen, dafür aber mehr zum Kühlen erforderlich sein. Die Ausprägung ist in den Teilgebieten unter- schiedlich stark. So wird in Stadtrandgebieten der Bedarf für die Heizenergie eher sinken als in innerstädtischen Gebieten, wo ohnehin nicht so viel geheizt werden muss. Bei der Kühlung ist es dagegen umgekehrt. Insgesamt ist für die klimatische Lage von Stuttgart die Qualität der Wärmedämmung am wichtigsten. Dies bedeutet, dass sich bei schlechter Dämmung der Fassade die Tempe- raturschwankungen außerhalb des Gebäudes stärker in den Innenraum fortsetzen und damit der Bedarf an Heiz- und Kühlenergie wächst. Dabei ist eine gute Dämmung im Hinblick auf eine energiesparende Kühlung noch viel wichtiger als beim Heizen – wobei anzumerken ist, dass der Kühlbedarf als absoluter Wert bisher noch deutlich geringer ist. Für den Bedarf an Heizenergie ist zudem das Gebäudevolumen wichtig. Weitere Faktoren spielen dagegen sowohl beim Heizen als auch beim Kühlen eine eher untergeordnete Rolle. AUF DEN PUNKT • Die städtebauliche Dichte und die Abwärme aus dem Verkehr spielt eine wichtige Rolle bei der Ent- stehung von warmen Mikroklima- zonen in der Stadt. • In Verbindung mit dem Klimawan- del führt dies zu einem höheren Energiebedarf zum Kühlen. Der Bedarf zum Heizen wird geringer. • Die Wärmedämmung und das Gebäudevolumen sind für den Energiebedarf für Heizen und Kühlen entscheidend. • Um den Klimawandel zu bremsen, muss der Energieverbrauch der Gebäude gesenkt werden. STADT-/REGIONALPLANUNG 26 Unsere Städte werden immer heißer – was tun? L In Zukunft werden die Menschen vor allem in den Städten immer stärker unter der sommerlichen Hitze leiden. Wie stark, das haben Meteorologinnen und Meteorologen in Freiburg für fünf baden-württembergische Städte berechnet. Zudem haben sie mit Hilfe von Modellen Vorschläge ausgearbeitet, mit denen sich die Hitzebelastung verringern lässt. EIGENES STADTKLIMA Auf dem Land wirken Wälder im Sommer kühlend, in der Stadt dagegen sorgen Straßen und Gebäude für einen zusätzlichen Hitzeschub. Im Zuge der Klimaerwärmung gewinnt diese alt- bekannte Tatsache für die Stadtbewohnerinnen und -bewohner allerdings an Brisanz: Die Zahl der Heißen Tage sowie der Tage mit Tempera- turen jenseits der 35 oder gar 40 °C wird ebenso zunehmen wie die sogenannten Tropennächte, in denen es auch nachts nicht mehr unter 20 °C abkühlt. Für das Wohlbefinden sind aber nicht nur die Lufttemperaturen entscheidend, sondern auch Luftfeuchtigkeit, Windgeschwindigkeit und vor allem die Strahlungstemperatur – also die Wärme, die direkt von der Sonne und von den Gebäuden ausgeht. All diese Faktoren haben für das Temperaturempfinden des Menschen Bedeutung und können Hitzestress erzeugen. Messen lässt sich dies mit soge- nannten thermischen Indizes, wobei hier die Physiologisch-Äquivalente Temperatur (PET) für die Biometeorologie besonders aussagekräftig ist. KLIMAANALYSE FÜR FÜNF STÄDTE Um abschätzen zu können, wie sich in Ba- den-Württemberg das Stadtklima entwickeln wird, hat die Albert-Ludwigs-Universität Freiburg fünf Städte im Land näher untersucht: Karlsruhe, Mannheim, Freiburg, Ulm und Konstanz. STADT-/ REGIONALPLANUNG PROJEKT Quantitative Bestimmung des Adap- tions- und Mitigationspotenzials von urbanen Grünflächen und Räumen auf das thermische Bioklima im 21. Jahrhundert Albert-Ludwigs-Universität Freiburg, Professur für Meteorologie und Klimatologie LUBW Berichts-ID U41-W03-N12 STADT-/REGIONALPLANUNG 27 AUF DEN PUNKT • In den Städten in Baden-Würt- temberg wird es bis 2035 deutlich wärmer. • Teilweise mehren sich die Stunden mit extremer Hitze über 41 °C erheblich. • Bäume an Straßen und Fassaden- begrünung senken die Tempera - turen. In dem Projekt „Quantitative Bestimmung des Adaptions- und Mitigationspotenzials von urba- nen Grünflächen und Räumen auf das thermi- sche Bioklima im 21. Jahrhundert“ haben die Klimatologinnen und Klimatologen zunächst die Messdaten des Zeitraums 1970 – 2000 ausgewer- tet und diesen Istzustand dem Testreferenzjahr 2035 gegenübergestellt. Außerdem wurden in diesen Städten mit teilweise selbst entwickelten Computermodellen die lokalen PET und mikro- klimatischen Verhältnisse simuliert, die im Zuge der Erwärmung zu erwarten sind. KARLSRUHE – EIN BESONDERS HEISSES PFLASTER Das Ergebnis der Klimaanalysen ist eindeutig: Zwar werden sich die Städte in Abhängigkeit von der Region klimatisch unterschiedlich entwickeln, überall offenkundig ist aber die Zu- nahme an Stunden mit Hitzestress. Zudem wer- den auch die Zeiten mit unangenehm heißen Nachtstunden zunehmen. Besonders deutlich wird dies in einem heißen Sommer in Karlsruhe zu spüren sein. Dort steigt dann tagsüber im Zeitraum Juni bis August der Anteil der Tage mit Hitzestress – also mit Physiologisch-Äquiva- lenter Temperatur ab 35 °C – vom Testreferenz- jahr 2010 bis zum Jahr 2035 auf fast 20 Prozent (s. Grafik). Besonders Besorgnis erregend ist die Tatsache, dass Karlsruhe bereits in etwa 20 Jah- ren in einem heißen Sommer weitaus stärker als heute unter extremem Hitzestress leiden wird: In der PET-Klasse über 41 °C steigt der Anteil der Hitzestunden am Tag von derzeit 1,8 auf 15,8 Prozent. Und auch in der Nacht häufen sich die Stunden, in denen es über 23 °C warm ist. Dabei kann die Wärme lokal besonders dann als sehr belastend empfunden werden, wenn es windstill ist und die Gebäude die Tageshitze bis tief in die Nacht hinein speichern. SCHATTEN UND PFLANZEN HELFEN Welche Lehren sollten nun Stadtplanung und Gebäudeeigentümerinnen und -eigentümer aus diesen Erkenntnissen ziehen? Die Simulationen der Freiburger Klimaforschung zeigen, dass vor allem Schatten spendende Bäume entlang der Straßen die gefühlt hohen Temperaturen in den Städten spürbar senken können – in den Modellrechnungen um 3,8 °C im Mittel. Nicht ganz so stark hilft die Begrünung von Fassaden, hier sind es nur 1,4 °C weniger. Vergleichsweise angenehm ist es bei Hitze auch in einer Grün- anlage, vor allem wenn dort Bäume stehen. Das Fazit der Freiburger Meteorologinnen und Meteorologen: „Eine weitreichende Verbesse- rung für größere Bereiche kann somit nur durch den flächendeckenden Einsatz von städtischem Grün erreicht werden“ (Projektbericht, S. 7). Entwicklung der Häufigkeit von heißen Sommern in Karlsruhe (Quelle: Albert-Ludwigs-Universität Freiburg) 0 20 40 60 80 100 H äu fig ke it (% ) PET (°C) > 41 41 - 35 35 - 29 29 - 23 23 - 18 18 - 13 13 - 8 8 - 4 < 4 HEISSER SOMMER (JUNI – AUGUST) Ø Tag Nacht 2035IST Ø Tag Nacht STADT-/REGIONALPLANUNG 28 Siedlungsverdichtung und Bauen im Zeichen der Klimaerwärmung L In Großstädten wie Stuttgart wird die Anpassung an den Klimawandel immer wichtiger – insbesondere auch vor dem Hintergrund, dass Siedlungsflächen nachverdichtet werden sollen. Wie aber lassen sich die Anforderungen für die Anpassung, z. B. Kaltluftschneisen, Grün flächen und gebäudefreie Außenbereiche zu erhalten, möglichst frühzeitig in die Stadtplanung integrieren? KLIMAOPTIMIERTE VERDICHTUNG Eine Hitzewelle wie im Sommer 2003 könnte ab Mitte des Jahrhunderts zum sommerlichen Alltag werden – mit allen gravierenden Nachteilen für das Wohlbefinden der Menschen. Es wird also noch heißer in den Innenstädten. Darauf muss sich die Stadtplanung als weitere Anforderung einstellen – zusätzlich zu der Aufgabe, Frei- flächen im Außenbereich zu erhalten und dafür nicht optimal genutzte Bauflächen im städtischen Innenbereich adäquat zu bebauen. Um all dies zu erreichen, soll zum Beispiel in Stuttgart die bestehende Informationsplattform Nachhaltiges Bauflächenmanagement Stuttgart (NBS) – damit werden seit 2001 kontinuierlich sämtliche größeren Bauflächenpotenziale erfasst – um einen sogenannten Klimaplanungspass erweitert werden. Hiermit wird dem Klima- belang als ein Kriterium für die Bewertung innerstädtischer Bauflächenpotenziale sowie für stadtplanerische Entscheidungen mehr Gewicht beigemessen. So wie es seit 2011 im STADT-/ REGIONALPLANUNG PROJEKT KlippS – Klimaplanungspass Stuttgart Landeshauptstadt Stuttgart, Amt für Stadtplanung und Stadterneuerung LUBW Berichts-ID U83-W03-N17 STADT-/REGIONALPLANUNG 29 Baugesetzbuch hinsichtlich Klimaschutz und Klimaanpassung im Rahmen der Bauleitplanung gefordert wird. Gerade in den dicht bebauten Innenstädten sind die klimatischen Folgen einer baulichen Nutzung besonders hoch. So stellt sich die Frage, wie man an solchen klimasensib- len Stellen bauen kann. Hier sollen die Untersuchungsergebnisse des Projektes „KlippS – Klimaplanungspass Stuttgart“ weiterhelfen. Es wurde gemeinsam von einem Expertenteam des Stuttgarter Amtes für Stadt- planung und Stadterneuerung, des Stuttgarter Amtes für Umweltschutz und der Albert-Lud- wigs-Universität Freiburg durchgeführt. Die Aufgabe, innerstädtische Bauflächenpotenziale klimaoptimiert zu nutzen, ist allerdings nur schwer zu lösen – schließlich bringt die damit verbundene Flächenversiegelung zumeist deutli- che stadtklimatologische Nachteile mit sich. URBANE HUMAN-BIOMETEOROLOGIE Lufttemperatur, Strahlungswärme aus der Umgebung, Windgeschwindigkeit, Luftfeuchte: All diese meteorologischen Parameter spielen eine Rolle, wenn es um das Wohlbefinden des Menschen geht. Human-biometeorologische Bewertungsverfahren, die auf der Energiebilanz des Menschen basieren, machen es möglich, das thermische Wohlbefinden wie auch eine Hitzebelastung zu beurteilen. Dabei stellt am Tage die vom Menschen absorbierte Strahlungs- wärme den wichtigsten „Wohlfühlfaktor“ dar, noch weit vor der Lufttemperatur. Dann lindert vor allem Beschattung den Hitzestress. In der Nacht dagegen hat eine ausreichende Belüftung durch kühlende bodennahe Windsysteme eine entscheidende Bedeutung. GRÜN MINDERT DIE HITZE DEUTLICH Die human-biometeorologische Bewertung spielt eine wichtige Rolle, wenn es um die kli- maverträgliche Planung von Bauvorhaben geht. Genau dies will das Projekt KlippS leisten, wo- bei für diese Bewertung von den zum Projekt- zeitpunkt ausgewiesenen 360 NBS-Flächen 59 repräsentative Flächen exemplarisch ausgewählt wurden. Davon wurden sieben Flächen inten- siver bearbeitet, indem die Folgen einer unter- schiedlichen Bebauung – derzeitiger Zustand, Asphalt, Grün, Planung mit Grün und Planung ohne Grün – auf den thermischen Komfort für Menschen simuliert wurden. Zwei Szenarien wurden dabei berücksichtigt: ein normaler Som- mertag (23. Juni 2011) sowie ein Hitzewellentag (4. August 2003). Auch wenn die Klimaan- passung nur ein Abwägungsbelang im Baupla- nungsrecht ist, so zeigt diese Untersuchung doch, wie wichtig er ist – und bis zu welchem Ausmaß sich durch Bäume und Grünflächen der zu erwartende verstärkte Hitzestress reduzieren lässt. Ein klarer Hinweis darauf, wie problema- tisch die Nachverdichtung vor dem Hintergrund der Klimaerwärmung in der Innenstadt werden kann, findet sich auch in der Studie: Demnach besteht schon heute für die NBS-Flächen in Kessellage ein „relativ hoher human-biometeo- rologischer Handlungsbedarf “ (Projektbericht, S. 39). Ausschnitt eines Klimaplanungspasses der NBS-Fläche 818 in Stuttgart (Quelle: Landeshauptstadt Stuttgart) AUF DEN PUNKT • Maßnahmen zur Klimaanpassung in Städten werden immer wichti- ger, weil Hitzewellen wie 2003 ab Mitte des Jahrhunderts zum Nor- malfall werden könnten. • Bei der Nachverdichtung städti- scher Flächen muss daher die Klimaanpassung ausreichend be rücksichtigt werden – der Klima- planungspass Stuttgart bietet eine Möglichkeit dazu. • Mit Modellrechnungen lassen sich die auf den Menschen bezogenen thermischen Folgen unterschied- licher Planungsvarianten auf diesen Flächen simulieren – und damit die Wirkung von Klima- schutzmaßnahmen aufzeigen. • Modellrechnungen zeigen quantitativ die Wirkungen von Bäumen und Grünflächen auf, die lokalen Auswirkungen von regio nal vorgegebener Hitze auf Menschen abzumildern. STADT-/REGIONALPLANUNG 30 Abhilfe für Karlsruher Hitze-Hot-Spots L Karlsruhe gilt wegen seiner exponierten Lage im Oberrheingraben als ein Wärmepol Deutschlands. Hinzu kommt der städtische Hitzeinsel-Effekt – die deutlich stärkere Aufheizung von Städten im Vergleich zum Umland. Umso wichtiger ist es für die Stadt, sich proaktiv den Folgen des Klimawandels zu stellen. Der städtebauliche Rahmenplan Klimaanpassung ist dabei ein wichtiger Baustein der Karlsruher Anpassungsstrategie auf Ebene der Stadtplanung. UMFANGREICHER ANSATZ Regelmäßig erreichen bei Hitzewellen die Temperaturen in Karlsruhe bundesweit Spit- zenwerte. So ist es nur konsequent, dass in der badischen Metropole die proaktive Anpassung an die Folgen des Klimawandels auf dem besten Wege ist, ein elementarer Bestandteil der Stadtentwicklung zu werden. Wesentlicher Teil dieser Strategie, mit der insbesondere der für die Gesundheit schädliche Hitzestress gemildert werden soll, war das Doppelprojekt „Städtebau- licher Rahmenplan Klimaanpassung für die Stadt Karlsruhe“. Der erste Teil beschäftigte sich dabei mit einer fundierten Analyse der Siedlungs- struktur, woraus die Ableitung eines Struktur- typenkatalogs sowie die Identifizierung soge- nannter „Hot-Spots“ in Bezug auf Hitzestress erfolgte. Teil zwei hatte experimentelle Testent- würfe zum Thema, entwickelte konkrete Einzel- maßnahmen sowie Maßnahmenpakete für die von Hitzewellen besonders betroffenen Stadt- gebiete und entwarf eine Strategie zur konkreten Umsetzung des Rahmenplans. STADT-/ REGIONALPLANUNG PROJEKTE Städtebaulicher Rahmenplan Klima- anpassung für die Stadt Karlsruhe und Anpassung der Siedlungsstruk- tur im Verdichtungsraum Karlsruhe an den Klimawandel. Fortsetzung des Projektes „Städtebaulicher Rahmenplan Klimaanpassung“ Stadt Karlsruhe, Stadtplanungsamt LUBW Berichts-ID U83-W03-N11 LUBW Berichts-ID U83-W03-N12 STADT-/REGIONALPLANUNG 31 Erklärtes Ziel war, den – wie es in der Studie heißt – „Akteuren aus Politik, Verwaltung und Gesellschaft“, einen auf Karlsruhe abgestimm- ten Werkzeugkasten bereitzustellen, der eine „klimawandelgerechte Stadtentwicklung und -sanierung“ ermöglicht (Projektbericht, S. 6). Die Erkenntnisse des Rahmenplanes sollen zum einen in Karlsruhe zu strategischen, wie auch konkreten Planungsentscheidungen etwa auf der Ebene der Bauleitplanung führen. Zum ande- ren können die dabei entwickelten Bausteine für eine nachhaltige Stadtentwicklung auch auf andere Städte übertragen werden, wobei natür- lich lokalspezifische Anpassungen und Ergän- zungen vorgenommen werden müssen. STADTSTRUKTURTYPEN UND HOT-SPOTS Im ersten Teil des Projekts galt es zunächst, Stadtquartiere mit ähnlichen Funktionsweisen aus der Siedlungsstruktur herauszufiltern, etwa im Hinblick auf Bebauungstypologie – beispiels- weise Blockrand, Zeilenbauten oder Hochhäuser – oder Nutzungscharakteristik, wie etwa Orts- kerne oder Gewerbegebiete. Insgesamt wurden 556 Quartiere untersucht und zwölf Stadtstruk- turtypen zugeordnet. Diese bildeten die Basis für den nächsten Schritt: Die Ermittlung von stadtstrukturtypenspezifischen Hot-Spots, also je Stadtstrukturtyp diejenigen Quartiere herauszu- finden, die vom städtischen „Wärmeinsel-Effekt“ bei Hitzewellen besonders betroffen sind. Dabei wurden nicht nur klimatische Basisdaten berücksichtigt, sondern auch Faktoren wie Sied- lungsstruktur, energetischer Gebäudezustand, Gebäudenutzung, Bevölkerungsdichte, Alters- struktur sowie die Erreichbarkeit, Kapazität und Aufenthaltsqualität der lokalen Grünflächen. Ein gutes Beispiel ist der Strukturtyp „geschlos- sener Blockrand“, der einen hohen Versie- gelungsgrad und oftmals Gewerbebauten im Innenhof aufweist. Hiervon gibt es in Karlsruhe 47 Quartiere. Für diese besteht ein erheblicher Handlungsbedarf: Die Zahl der potenziellen Hot-Spots wird hier von heute 32 auf 45 im Jahr 2050 steigen. Generell sind diese Gebiete bereits heute von einer hohen bioklimatischen Belastung bei Tag und Nacht gekennzeichnet, zudem sind geeignete Grünflächen zur Entlas- tung kaum erreichbar. RAHMENPLAN FÜR DIE KLIMA WANDELANGEPASSTE STADTENTWICKLUNG Im zweiten Teil des Projekts wurden dann für jeweils drei Ebenen – Gesamtstadt, Quartier, Gebäude – insgesamt 19 verschiedene, den Hit- zestress reduzierende und sonstige Anpassungs- maßnahmen genauer betrachtet. Dazu zählen etwa Entsiegelung, grüne Gleistrassen oder Fas- sadenbegrünung, aber auch die Vernetzung von Freiräumen oder erlebbares Wasser im öffent- lichen Raum zur Verdunstungskühlung. Dabei wurde deutlich, dass sich mit dem angewandten „Werkzeugkasten“ die Potenziale für solche Maßnahmen in den einzelnen Quartieren punkt- genau aufzeigen lassen. Hinzu kommt, dass der Gesamtplan sehr konkrete Hinweise zu diesen Potenzialen gibt. Er zeigt, wie und wo sich Quartiere klimagerecht nachverdichten lassen und welche Gebiete zur Ausweisung von kli- maökologischen Sanierung bzw. welche Gebiete für eine klimaökologische Baubeschränkung in Frage kommen. Der Karlsruher Gemein de rat hat am 24. März 2015 den Rahmenplan als „ sons tige städte bau li che Planung“ nach § 1 Abs. 6 Nr. 11 BauGB be schlos sen. Er ist damit künftig bei der Abwägung im Rahmen der Bau leit pla nung zu berück sich ti gen. AUF DEN PUNKT • Karlsruhe ist als ein Wärmepol Deutschlands auf eine klimawan- delangepasste Stadtentwicklung besonders angewiesen. • Im Rahmen des Projekts wurden stadtstrukturtypenspezifische Hot-Spots ermittelt, die vom städtischen „Wärmeinsel-Effekt“ bei Hitzewellen besonders betrof- fen sind. • Der Rahmenplan macht konkrete Vorschläge für Anpassungsmaß- nahmen, zeigt aber auch Potenziale zur klimagerechten Nachverdich- tung. • Empfehlungen gibt es auch für Gebiete, für die sich aus klimaöko- logischer Sicht Beschränkungen beim Bauen oder die Notwendig- keit zur städtebaulichen Sanierung ergeben. Erlebbares Wasser am Wasserspielplatz STADT-/REGIONALPLANUNG 32 Wie anpassungsfähig ist eine Stadt? L Der Klimawandel wird das Leben auch in mittelgroßen Städten verändern. Wenn Stadtplanerinnen und -planer die Auswirkungen begrenzen wollen, müssen sie zunächst ermitteln, wie anpassungs fähig eine Stadt ist, sprich: Welche Möglich- keiten es zur Linderung der Klimafolgen gibt. Am Modellfall Ludwigsburg wurde dies durchgespielt. VULNERABILITÄT UND ANPASSUNGS- KAPAZITÄT Die Idee ist gut: Die Folgen des Klimawandels lassen sich durch Anpassungsmaßnahmen mildern – etwa wenn mehr Grünflächen in einer Stadt eingerichtet werden. In der Praxis ist das allerdings meist alles andere als einfach. Zunächst ist es wichtig, die tatsächliche Betrof- fenheit oder „Verletzlichkeit“ einer Stadt – die Vulnerabilität – zu bestimmen und dabei die mögliche Anpassungsfähigkeit einzubeziehen. Darauf aufbauend können dann geeignete stadtplanerische Maßnahmen einen Teil dazu beitragen Gefahren zu mildern, z. B. gesundheit- liche Gefahren durch Hitzewellen. Der Frage, wie sich diese Aufgabe bewerkstel- ligen lässt, wurde im Projekt „Das Konzept der Anpassungskapazität als Teil der Vulnerabilitäts- bestimmung in der Stadt- und Raumplanung – Evaluation und Weiterentwicklung in der Praxis“ bearbeitet. Befasst hat sich das Projekt, wie es in der Studie heißt, „mit der konzeptio- nellen Erweiterung respektive Präzisierung des Konzepts der Anpassungskapazität und dessen praktischer Anwendung auf kommunaler Ebene“ (Projektbericht, S. 8). Die Übertragung dieses Konzepts in die Praxis erfolgte für die „Mittel- stadt“ Ludwigsburg. Diese etwa 89 000 Einwoh- STADT-/ REGIONALPLANUNG PROJEKT Das Konzept der Anpassungska- pazität als Teil der Vulnerabilitäts- bestimmung in der Stadt- und Raumplanung – Evaluation und Weiterentwicklung in der Praxis Hemberger und Utz UG LUBW Berichts-ID U83-W03-N16 STADT-/REGIONALPLANUNG 33 ner zählende Stadt steht dabei stellvertretend für die 87 baden-württembergischen Mittelstädte, in denen etwa 30 Prozent der Bevölkerung des Landes leben. KET – EIN WERKZEUG ZUR KAPAZITÄTENERMITTLUNG Wenn Stadtplanerinnen und -planer wissen möchten, wo und in welchem Umfang auf dem Gemeindegebiet welche Anpassungskapazitä ten vorliegen, dann können sie künftig das so- genannte Kapazitätenermittlungstool (KET) nutzen, das im Rahmen dieses Projekts „von Grund auf neu“ (Projektbericht, S. 45) erarbeitet wurde. Der Ansatz: Flurstücksflächen, Straßenab- schnitte und bauliche Anlagen, die sich beson- ders für mögliche Anpassungen zur Reduzierung thermischer Lasten eignen und damit Anpas- sungskapazitäten aufweisen, werden mittels Daten aus dem kommunalen Geoinformations- system (GIS) ermittelt und in ihrer Relevanz be- wertet. Objekte ohne solche Kapazitäten werden dagegen als nicht geeignet ausselektiert. Mit diesem, so die Entwicklerinnen und Entwickler, „standardisierten und vergleichsweise schnell durchführbaren Verfahren“ (Projektbericht, S. 47) lassen sich für das gesamte Stadtgebiet diejenigen Objekte identifizieren, bei denen sich Anpassungsmaßnahmen sinnvoll verwirklichen lassen. Auf Grundlage dieser Ergebnisse kann die anschließende Einzelfallprüfung vor Ort zielgerichtet und effizient durchgeführt werden. Dabei kommt es ganz besonders darauf an, AUF DEN PUNKT • Um Anpassungsmaßnahmen an den Klimawandel vorzunehmen, muss zunächst die Anpassungs- fähigkeit einer Stadt bestimmt werden. • Als neues Werkzeug zur Ermittlung der Anpassungskapazität kann das Darstellungs- und Simulationspro- gramm KET genutzt werden. • Für Ludwigsburg ergab die Anwen- dung von KET eine ganze Reihe von Möglichkeiten, die Mittelstadt besser für den Klimawandel zu rüsten. Flächen zu entsiegeln und stattdessen zu begrü- nen, Bäume zu pflanzen sowie Wasserflächen anzulegen. LUDWIGSBURG ALS MODELLSTADT Als praktische Anwendung dieses Handwerk- zeugs wurden die Anpassungskapazitäten für Ludwigsburg ermittelt und in Form von Karten dargestellt. Angezeigt werden zum Beispiel Flächen und Gebäude mit Potenzial für eine Begrünung – je nach Eignung farblich abgestuft. Dabei spielt unter anderem auch die Mindest- größe einer Fläche eine Rolle, um beispielsweise bei einer Begrünung einen nennenswerten lokalen Klimaeffekt mit vertretbarem Aufwand zu erreichen. Je nach betrachteter Anpassungs- option kommen noch weitere mögliche Ein- schränkungen in Betracht, bei der Dachbe- grünung beispielsweise eine zu steile Dach- neigung. Insgesamt zeigen die Karten, dass in Ludwigsburg eine ganze Reihe von Möglich- keiten bestehen, die Stadt besser für die abseh- baren Folgen des Klimawandels zu rüsten. Bildausschnitt aus dem Kapazitätenermittlungstool (Quelle: Stadt Ludwigsburg) STADT-/REGIONALPLANUNG 34 Mit Grün gegen den Klimawandel L Unter den steigenden Temperaturen, die mit dem Klimawandel verbunden sind, haben Städte besonders zu leiden. Pflanzen können den Hitzestress dort mindern. Die Baubotanik will mit neuen Wegen mehr Grün in die Städte bringen und dabei auch ästhetische Akzente setzen. PFLANZLICHE FACHWERKSTRUKTUR Bäume sind schön anzusehen, leben lange und haben eine positive Wirkung auf das Stadtklima. Aber Bäume wachsen nun einmal ziemlich lang- sam. Diesen Nachteil will die Baubotanik aus- gleichen: Hier bietet die sogenannte Pflanzen- addition die Möglichkeit, schnell Gebäude zu begrünen – und zwar so, dass der Bewuchs ebenso dauerhaft und ökologisch wie ein Baum ist. Bei dieser Technik werden junge Pflanzen, die in eigenen Behältern wurzeln, mit Hilfe eines Gerüstes so angeordnet und verbunden, dass sie miteinander verwachsen und dabei eine pflanzliche Fachwerkstruktur bilden. Mit der Zeit wurzelt dieses Pflanzenkonglomerat im Boden. Schließlich ist das Wurzelwerk dort so leistungs- fähig, dass die an verschiedenen Stellen des Gerüsts angebrachten Pflanzbehälter entfernt werden können – und damit auch die Bewässe- rungs- und Düngevorrichtungen entfallen. Dann ist diese Bauwerksbegrünung so robust wie natürlich gewachsene Bäume. „Bauwerke und Bäume fusionieren zu einer vegetationstechnischen und gestalterischen Ein- heit“ (Projektbericht, S. 15), heißt es dazu in der Studie „Klimaaktive baubotanische Siedlungs- strukturen, Bau typologien und Infrastrukturen: Modellprojekte und Planungswerkzeuge“. Darin beschreibt das Projektteam die Möglichkeiten, mit denen die Baubotanikerinnen und -botani- ker nicht nur einzelne Gebäude, sondern auch STADT-/ REGIONALPLANUNG PROJEKT Klimaaktive baubotanische Sied- lungsstrukturen, Bautypologien und Infrastrukturen: Modellprojekte und Planungswerkzeuge Universität Stuttgart, Institut Grundlagen Moderner Architektur und Entwerfen (IGMA) LUBW Berichts-ID U83-W03-N15 STADT-/REGIONALPLANUNG 35 AUF DEN PUNKT • Mit baubotanischen Methoden werden dauerhafte Vegetations- strukturen geschaffen, die ähnlich robust und ökologisch wertvoll wie Bäume sind, aber schneller wachsen. • So können einzelne Gebäude- fassaden begrünt und ganze Stadt- quartiere aufgewertet werden. • Fünf Modellprojekte aus Stuttgart zeigen, wie sich die Möglichkeiten der Baubotanik praktisch umsetzen lassen. ganze Stadtviertel mit solchen vegetations- technischen Maßnahmen klimatologisch und ästhetisch aufwerten wollen. Und sie geben konkrete Planungshinweise, wie sich eine solche Stadtbegrünung in die Praxis umsetzen lässt. ANSCHAULICHE MODELLPROJEKTE Mit insgesamt fünf Modellprojekten aus Stuttgart will die Studie das große städtebauliche wie auch ökologische Potenzial aufzeigen, das in der Baubiologie steckt. Wie sich eine umfassende Quartiersanierung umsetzen lässt, wurde am Beispiel des „Baubotanischen Straßentypus Nordbahnhofareal“ gezeigt. Mit ihren Planungen haben die Baubotanikerinnen und -botaniker dort „ein sehr großes Grünvolumen geschaffen, durch das die Gebäude verschattet werden und lokal ein Kühlungseffekt eintritt, während gleich- zeitig durch die lineare Anordnung der Baum- kronen eine gute Durchlüftung des Straßenrau- mes gewährleistet ist“ (Projektbericht, S. 8). Ein weiteres Beispiel sind die „Wohnbäume Hop- penlau“ nordwestlich des Hoppenlaufriedhofs in Stuttgart. Im Zuge der beabsichtigten Nach- verdichtung werden dort Bäume verloren gehen – was sich durch baubotanische Strukturen zu einem gewissen Grad kompensieren ließe. So könnte man zum Beispiel Stege begrünen, die zu den Gebäuden führen. Noch weiter ausgereizt werden die pflanzentech- nischen Möglichkeiten beim Projekt „Baubota- nische Parkbausteine“. Dort geht es darum, neu Baubotanische „Baumwand“ als Lärmschutzwand und Baubotanisches Konzept einer Baumfassade mit Wassermanagementsystem (Quelle: Universität Stuttgart) Baubotanischer Platanenkubus Nagold geschaffene oder durch Baumaßnahmen zerstörte Parkflächen mit einer neuen ökologischen und „sinnlichen“ Qualität zu versehen. Dazu werden beispielsweise Astverzweigungen gezielt so angelegt, dass die Bäume Spielelemente wie etwa Baumhäuser tragen können. Weiterhin will das Modellprojekt „Transformation Gewerbegebiet Birkenkopf“ aufzeigen, dass sich mit Hilfe der Baubotanik stadtnahe Gewerbegebiete so um- wandeln lassen, dass der Transport von Frischluft in die Stadt möglichst wenig behindert wird. ERGRÜNTES PARKHAUS Ein Planungsbeispiel, das sich leicht auf andere Städte übertragen lässt, ist die Projektidee „Park- Haus Züblin“. In diesem Planspiel wurde mit baubotanischen Methoden die unanschauliche Fassade eines älteren Gebäudes aufgewertet. Im Falle einer Umsetzung könnte diese Maßnahme dort positiv auf den aktuellen Hitzeinseleffekt wirken. STADT-/REGIONALPLANUNG 36 Begrünte Dächer – besseres Klima L Pflanzen auf den Dächern wirken ausgleichend: Bei Hitze kühlen sie und im Winter dämmt die Vegetationsschicht gegen Kälte. Zudem wird Niederschlags- wasser gespeichert. Aber nicht alle Pflanzen sind gleich gut für das harte Leben auf einem Dach geeignet. NÜTZLICHES BIOTOP Deutschland dürfte Weltmeister in der Begrü- nung von Dächern sein: Schätzungen gehen da- von aus, dass bereits 15 Prozent aller Flachdächer eine Vegetationsdecke tragen. Allein in Stuttgart gab es laut einer 2012 veröffentlichten Studie mehr als zwei Millionen Quadratmeter begrünte Dächer und Tiefgaragen. Verwunderlich ist das nicht, schließlich werden Begrünungsmaßnah- men von vielen Kommunen finanziell unter- stützt, weil sie viele Vorteile haben. So wirken sie ausgleichend auf das lokale Mikroklima der Umgebung wie auch auf das Gebäudeklima. Dabei verringern grüne Dächer eine Aufheizung im Sommer allerdings effektiver als Wärmever- luste im Winter. Hinzu kommt, dass bewachsene Dächer Niederschlagswasser speichern, was die Abwassergebühren senkt und bei starkem Regen den Abfluss in die Kanalisation zumindest anfänglich bremst. Und nicht zuletzt stellt ein Biotop auf dem Dach auch einen Lebensraum für Insekten und andere Tiere dar. SYSTEMATISCHE UNTERSUCHUNG Inzwischen gibt es zwar viele Erfahrungen mit der Bepflanzung von Dächern, systematische Untersuchungen, welche Pflanzen sich alleine oder in gemischter Artenzusammensetzung besonders gut für das raue Leben auf dem Dach eignen, sind noch selten. Im Rahmen des Projekts „Untersuchungen zur Kühlwirkung und Niederschlagsretention der extensiven Dachbe- STADT-/ REGIONALPLANUNG PROJEKT Untersuchungen zur Kühlwirkung und der Niederschlagsretention der extensiven Dachbegrünungs- vegetation Universität Hohenheim, Institut für Landschafts- und Pflanzenökologie LUBW Berichts-ID U83-W03-N13 STADT-/REGIONALPLANUNG 37 grünungsvegetation“ hat deshalb ein Forscher- team der Universität Hohenheim in Kooperation mit dem Deutschen Dachgärtnerverband (DDV) über ein Jahr hinweg kontinuierlich Messungen an verschiedenen Bepflanzungsvarianten durch- geführt. Bei der praxisnahen Studie ging es um das artspezifische Wasserrückhaltevermögen, die Transpiration sowie die Boden- und Ober- flächentemperaturen der unterschiedlichen Dachbegrünungen. Diese setzten sich aus fünf häufig verwendeten Pflanzenarten zusammen, die zudem unterschiedliche Funktionen erfüllen: Blaues Sandschillergras (Koeleria glauca), die Leguminose Hornklee (Lotus corniculatus), Kartäusernelke (Dianthus carthusianorum), der Zwergstrauch Sandthymian (Thymus serpyllum) sowie die sukkulente Goldfetthenne (Phedimus floriferus). Die Pflanzen wurden in Reinkultur oder in unterschiedlichen Mischungen in die Versuchsschalen gesetzt. DIE MISCHUNG MACHT’S Die Messungen zur Wasserretention bestätigten die bisherigen Erfahrungen: Unabhängig von der Artenzusammensetzung hielt die exten- sive Dachbegrünung im Jahresdurchschnitt 30 Prozent des Niederschlagswassers zurück – im Sommerhalbjahr waren es sogar 39 Prozent. Besonders effektiv war die Mischung aus Gras und Leguminose. Wegen ihrer Möglichkeit, Stickstoff aus der Luft zu binden, wirkte die Leguminose zudem wachstumsfördernd, etwa in einer Mischung mit der Fetthenne. Besonders robust war die Mischung aus Gras und Fetthen- ne, während im Sommer beim Thymian und nicht ganz so stark beim Hornklee ein Absterben zu verzeichnen war. Bestätigt wurden auch die bekannten Kühleffekte: Im Mittel waren die bepflanzten Schalen um etwa fünf °C kühler als die unbepflanzten Kontrollbehälter – wobei es nur geringe Unterschiede zwischen den Pflanz- varianten gab. Und schließlich bestätigte sich, dass aus mehreren Arten aufgebaute Systeme bessere Ergebnisse zu Niederschlagsretention und Kühlleistung als einfach aufgebaute Bestän- de ermöglichen. PFLEGE ZAHLT SICH AUS Gutes Wasserrückhaltevermögen, ordentliche Kühlung, attraktives Erscheinungsbild, Lang lebigkeit und eine reichhaltige Biodiversität: All das soll eine gute Dachbegrünung leisten. Das geht aber auf Dauer nur, wenn sie regelmäßig gepflegt wird. Ansonsten kann die Vegetations- schicht verfilzen und der Bestand verarmen. Das aber ist nicht gut, denn die Untersuchung bestätigte, „dass Systeme mit einer höheren pflanzlichen Biodiversität und Ressourcennut- zung bessere und länger andauernde ökologi- sche Dienstleistungen als einfach aufgebaute Bestände ermöglichen“ (Projektbericht, S. 70). AUF DEN PUNKT • Begrünte Dächer kühlen im Som- mer und isolieren das Gebäude im Winter. • Die Vegetation auf dem Dach hält Niederschlagswasser zurück, wobei eine Mischung aus Gras und Leguminose besonders effektiv ist. • Pflege erhält die Pflanzenvielfalt, und diese ermöglicht eine bessere ökologische Dienstleistung der Dachbegrünung. Durchmischte Dachbegrünung STADT-/REGIONALPLANUNG 38 Klimagerechte Land- schaftsplanung: Das Beispiel Unteres Remstal L Hochwasser, Sturzfluten, Hitzebelastung, Trockenheit – die Folgen der Klimaerwärmung sind vielfältig und für Menschen, Tiere und Pflanzen sehr belastend. Daher ist es wichtig, sich mit möglichen Auswirkungen des Klima- wandels zu befassen und Maßnahmen zur Minderung nachteiliger Entwicklungen in die Landschaftsplanung zu integrieren. KLIMAANPASSUNG AUF KOMMUNALER EBENE Landschaftsplanung, so steht es im Bundesnatur- schutzgesetz, muss unter anderem zur dauerhaf- ten Sicherung der „Leistungs- und Funktions- fähigkeit des Naturhaushaltes“ (Projektbericht, S. 15 aus BNatSchG §1 Abs. 1 Nr. 2) als Grundlage des Lebens und der Gesundheit des Menschen beitragen. Dazu muss sie unter anderem Ziele und Maßnahmen „zum Schutz, zur Qualitäts- verbesserung und zur Regeneration“ (Projekt- bericht, S. 15 aus BNatSchG §9 Abs. 3 Nr. 4 e) auch von Luft und Klima vorschlagen. Zudem wirken sich Klimaänderungen auch auf die biologische Vielfalt sowie das Landschaftsbild und die Erholungseignung der Landschaft aus. Die Anpassung an den Klimawandel ist mithin eine Aufgabe der Landschaftsplanung, die immer wichtiger wird, wie die Zunahme an extremen Wetterereignissen zeigt. Ein Beispiel, wie dies erfolgen kann, zeigt das Projekt „Kommunale Klimaanpassung durch Landschaftsplanung: Das Untere Remstal als STADT-/ REGIONALPLANUNG PROJEKT Kommunale Klimaanpassung durch Landschaftsplanung: Das Untere Remstal als Modell für Baden-Würt- temberg Technische Universität Berlin, Institut für Landschaftsarchitektur und Umweltplanung LUBW Berichts-ID U83-W03-N21 STADT-/REGIONALPLANUNG 39 Modell für Baden-Württemberg“. An der Studie beteiligt waren die Technische Universität Berlin, der Planungsverband Unteres Remstal mit den Kommunen Fellbach, Kernen, Korb, Waiblingen und Weinstadt sowie die Planungsgruppe Land- schaftsarchitektur und Ökologie. Erarbeitet wur- de ein ausführlicher Leitfaden, der basierend auf dem Beispiel Unteres Remstal allen Kommunen Baden-Württembergs sowie deren Planungsbü- ros wichtige Hinweise zur Integration des Klima- wandels in die Landschaftsplanung geben kann. VERWUNDBARE SCHUTZGÜTER Basierend auf einer ersten Grobeinschätzung zeigte sich, dass sich der Klimawandel im Un- teren Remstal vor allem auf folgende Schutz- güter auswirken wird: Boden (Erosion), Wasser (Hoch- und Niedrigwasser, Sturzfluten) und menschliche Gesundheit (Hitzebelastung im Siedlungsbereich). Zu diesen Schutzgütern wurden vertiefende Betroffenheitsanalysen durchgeführt. Darüber hinaus wurden aufgrund ihrer hohen Bedeutung für die Landschaftspla- nung auch die biologische Vielfalt sowie das Landschaftsbild und die Erholungseignung der Landschaft betrachtet und im Leitfaden thema- tisiert. Basierend auf Datenerhebungen und der genannten Betroffenheitsanalyse wurden konkre- te Ziele und Maßnahmen zum Klimaschutz und zur Klimaanpassung für das Untere Remstal ent- wickelt. Die Ergebnisse sind in übersichtlichen Tabellen und anschaulichen Karten dargestellt, damit die Übertragung auf andere Kommunen und Räume erleichtert wird. GEFÄHRLICHE STURZFLUTEN Ganz erheblich vom Klimawandel betroffen ist das Schutzgut Wasser: Hochwasserereignisse, Niedrigwasserperioden und urplötzliche Sturz- fluten, wie etwa im Mai 2016 in Braunsbach im Landkreis Schwäbisch Hall, müssen in der Land- schaftsplanung berücksichtigt werden. Insbeson- dere Starkregen ist ein Problem – solche Ereig- nisse sind für etwa die Hälfte aller Überflutungs- schäden in Baden-Württemberg verantwortlich. Um die Gefährdung durch Sturzfluten zu bestimmen, müssen vor allem die Hangneigung sowie die Rauheit der Landnutzung – versiegelte Flächen leiten das Wasser schneller ab – ermit- telt werden. Dieser bisher wenig berücksichtigte Aspekt wurde im Projekt aufgegriffen. So konnte eine erste Einschätzung des Gefahrenpotenzials gegeben werden. Das Fazit des beteiligten Landschaftsplanungs- büros: „Flächennutzungen mit hohen Oberflä- chenabflüssen bedürfen in Zukunft einer be- sonderen Aufmerksamkeit, insbesondere wenn Bodentypen mit hoher Erosionsgefährdung, etwa Lössböden, vorherrschen. Angaben zur Erosionsgefährdung gepaart mit der aktuellen Landnutzung sind in diesem Zusammenhang elementare Informationsgrundlagen“ (Projektbe- richt, S. 88). Diese müssten von den Kommunen und Planungsbüros allerdings häufig gesondert erhoben werden. AUF DEN PUNKT • Landschaftsplanung muss die Folgen des Klimawandels berück- sichtigen. • Besonders betroffen sind die Schutzgüter menschliche Gesundheit, Boden, Wasser und biologische Vielfalt. • Beim Schutzgut Wasser muss die Landschaftsplanung künftig stärker die Gefährdung durch Sturzfluten berücksichtigen. Beispiel für die Integration von Maßnahmen des Klimaanpassungskonzepts in einen Landschaftsplan (Kartenausschnitt) (Quelle: Technische Universität Berlin) STADT-/REGIONALPLANUNG 40 Wie Flora und Fauna auf den Klimawandel reagieren L Die Pflanzen- wie auch die Tierwelt haben sich in den vergangenen Jahr- zehnten deutlich verändert. Das hat eine ganze Reihe von Ursachen, aber klar ist, dass dem Klimawandel eine wachsende Bedeutung zukommt. ZWEI STUDIEN ZUR STADTFLORA UND ZU INSEKTEN In den letzten drei Jahrzehnten sind verstärkt wärmeliebende Pflanzen- und Tierarten nach Deutschland eingewandert. Die Zunahme von Insekten aus südlichen Gefilden ist ungebrochen und viele thermophile Pflanzenarten breiten sich weiter aus. Doch wenn man genau wissen will, welche Arten zunehmen, dann müssen in regelmäßigen Abständen reproduzierbare Kartierungen und Erhebungen durchgeführt werden. Dazu wurden stellvertretend für das umfassende Themenfeld „Flora und Fauna“ zwei Untersuchungen durchgeführt: das Karls- ruher Institut für Botanik und Landeskunde hat das Projekt „Auswirkungen des Klimawandels auf die Pflanzenwelt Baden-Württembergs am Beispiel der Stadtflora“ bearbeitet und das Büro Schanowski die „Auswirkungen des Klimawan- dels auf die Insektenfauna (ausgewählte Arten- gruppen)“ untersucht. Bei Ihren Kartierungen in den fünf Städten Aa- len, Karlsruhe, Konstanz, Stuttgart und Ulm wur- den zum einen eine spezielle hierfür entwickelte Transektmethode, zum anderen ergänzend ganze NATURSCHUTZ/ BIODIVERSITÄT PROJEKT 1 Auswirkungen des Klimawandels auf die Pflanzenwelt Baden-Württem- bergs am Beispiel der Stadtflora Thomas Breunig - Institut für Botanik und Landschaftskunde LUBW Berichts-ID U51-W03-N10 PROJEKT 2 Auswirkungen des Klimawandels auf die Insektenfauna (ausgewählte Artengruppen) Büro Schanowski LUBW Berichts-ID U51-W03-N11 NATURSCHUTZ/BIODIVERSITÄT 41 Stadtquartiere kartiert. Die Ergebnisse wurden mit einer vergleichbaren Untersuchung aus dem Jahre 2006 sowie mit historischen Daten verglichen. Die Insektenstudie umfasste eine Daten- und Literaturstudie zu jenen Gruppen, die bereits 2005 auf ihre Eignung als Indikatoren für den Klimawandel untersucht worden waren: Schmetterlinge, Käfer, Stechimmen und Libellen. Auch hier dienten historische Daten als weitere Vergleichsgrundlage. WÄRME LIEBENDE PFLANZEN AUF DEM VORMARSCH Bei der Stadtflora ergaben sich zwischen 2006 und 2011 insgesamt keine allzu großen Arten- veränderungen. Allerdings nahm die Häufigkeit insbesondere bei Wärme liebenden Arten wie dem Sommerflieder, dem Kahlen Bruchkraut und dem Florentiner Habichtskraut zu. Erstmals trat das Japanische Liebesgras auch außerhalb der wärmebegünstigten Ober rheinebene auf. Im historischen Vergleich fällt seit etwa 1980 die verstärkte Einwanderung Wärme liebender Arten auf, die ursprünglich nur im Mittelmeer- raum und anderen wärmeren Klimagebieten beheimatet waren. Bemerkenswert ist auch, dass viele Zierpflanzen wie der aus China stammende Sommerflieder zunehmend verwildern. Diese für Schmetterlinge sehr attraktive Pionierpflanze breitet sich vor allem in warmen und „winter- milden“ Regionen aus, wozu etwa das Ober- rheingebiet oder das Bodenseebecken zählen. Und der früher seltene Portulak ist in den Städten des Oberrheingebietes inzwischen eine der häufigsten Pflanzen. „Bei weiterer Klimaer- wärmung ist davon auszugehen, dass es vielen bisher nur angepflanzt in Städten vorkommen- den Baum- und Strauch arten gelingen wird, zu verwildern und Bestandteil der spontanen Wildflora zu werden“ (Projektbericht 1, S. 38), heißt es in der Studie zur Stadtflora. VIELEN INSEKTEN BEKOMMT DER KLIMAWANDEL Auch bei den Tieren bestätigt sich der beobach- tete Trend: Arten, die Wärme lieben, nehmen zu und weiten ihre Besiedelungsgebiete aus, wie etwa die Gelbbindige Furchenbiene oder die Feuerlibelle. Andere wie der Laufkäfer Westlicher Bartläufer sind erst in den letzten Jahren eingewandert. All diesen Arten, die eine Ausdehnung ihres Verbreitungsgebietes zeigen, ist gemeinsam, „dass sie zwar als Wär- me liebend gelten, aber ansonsten keine allzu speziellen Habitatansprüche stellen“ (Projekt- bericht 2, S. 79), wie der Studienautor anmerkt. Sie können schnell ihren Besiedelungsraum ausdehnen, wenn sich die klimatischen Bedin- gungen ändern. Dies gilt allerdings auch für Schädlinge wie den Eichen-Prozessionsspinner und für Krankheiten übertragende Insekten wie die Tigermücke. Allerdings können auch Wärme liebende Schmetterlings- und Wildbienenarten unter dem Klimawandel leiden, etwa unter ausgeprägten Trockenphasen. Und manche Insekten wie der Große Eisvogel zählen zu den Verlierern, da sie kühlere Lebensräume bevor- zugen. AUF DEN PUNKT • Pflanzen- und Tierarten, die Wärme lieben, werden durch den Klimawandel begünstigt. • Es ist eine verstärkte Einwan- derung Wärme liebender Arten zu beobachten. • Es gibt auch Arten, die unter dem Klimawandel leiden. • Der Klimawandel begünstigt die Ausbreitung mancher Schädlings- arten sowie die Neueinwande- rung von Insekten, die Krankheiten übertragen. Ausbreitung der Gelbbindigen Furchenbiene (Quelle: LUBW) NATURSCHUTZ/BIODIVERSITÄT 42 Gibt es künftig noch genug Trinkwasser? L Der Klimawandel bringt verstärkt Dürreperioden und Hitzewellen mit sich – und das immer häufiger gleichzeitig. Dies macht der Trinkwasserversorgung zu schaffen, weil Quellen versiegen und gleichzeitig der Wasserbedarf steigt. Im Süd- schwarzwald wurde untersucht, wie Trinkwasserversorger auf diese Herausforderung reagieren können. KOMPLEXE WASSERVERSORGUNG Der Südschwarzwald ist eine wunderbar ab- wechslungsreiche Landschaft: stark zergliedertes Gelände, große Höhenunterschiede, dünne Besiedelung. Was gut ist für den Tourismus, macht die Trinkwasserversorgung kompliziert. Sie ist gekennzeichnet von zahlreichen Quellen und kleinen Anlagen zur Aufbereitung und Speicherung des Wassers sowie von langen Transportleitungen. Hinzu kommt eine weitere Herausforderung für die Wasserversorger: Wenn es länger nicht regnet, können viele Quellen versiegen. Das war bereits in der Vergangenheit der Fall – und das Problem dürfte im Zuge der Klimaerwärmung mit den zu erwartenden häufigeren Dürreperioden noch zunehmen. Hier setzt das Projekt „Vulnerabilitätsanalyse von Wasserversorgungsunternehmen im südlichen Schwarzwald hinsichtlich des Klimawandels“ an. Die Erkenntnisse, die das Team vom Karlsruher Technologiezentrum Wasser (TZW) dabei ge- sammelt hat, sind allerdings nicht auf den Süd- schwarzwald begrenzt. Vor allem die im Rahmen des Projekts erarbeitete Methodik lässt sich auch auf andere Regionen übertragen, wobei dann unterschiedliche Voraussetzungen, insbeson- dere hinsichtlich Niederschlagshäufigkeit und Geologie, zu berücksichtigen sind. PROJEKT Vulnerabilitätsanalyse von Was- serversorgungsunternehmen im südlichen Schwarzwald hinsichtlich des Klimawandels DVGW - Technologiezentrum Wasser LUBW Berichts-ID U83-W03-N14 WASSERHAUSHALT WASSERHAUSHALT 43 MINIMALE RESTSCHÜTTUNG 4240 Quadratkilometer groß ist das Einzugsge- biet, aus dem die 21 untersuchten Gemeinden ihr Trinkwasser beziehen, deren Gemeindefläche sich auf 832 Quadratkilometer summiert. Bei ihren Analysen unterschieden die Wissenschaft- lerinnen und Wissenschaftler hinsichtlich der genutzten Quellen drei Typen, deren Schüttung, das ist die Wassermenge, die eine Quelle je Zeiteinheit spendet, in Trockenzeiten bereits in der Vergangenheit unterschiedlich stark zurück- ging. Zu erwarten ist, dass sich dieser Trend im Zuge der Klimaerwärmung verstärken wird. Besonders problematisch sind dabei diejenigen Quellen, die heute bei Niedrigwasser weniger als 12,5 Prozent der mittleren Schüttung liefern. Bei einem stark ausgeprägten Klimawandel – einem Worst-Case-Szenario – schrumpft die Wassermenge dann um bis zu 45 Prozent auf eine minimale Restschüttung. Das generelle Hauptproblem bei den Quellen im Südschwarzwald ist, dass die Grundwasser- leiter meist nur eine geringe Speicherkapazität haben. Damit die Quellen schütten, müssen sie also mit Sickerwasser von oben versorgt werden – was schon früher oft ein großes Problem war. Bei einem starken Klimawandel wird die Sickerwasserbildung bis zur Mitte des Sommer- halbjahrs für den Zeitraum 2021 bis 2050 um 35 Prozent und bis Ende des Jahrhunderts um 60 Prozent abnehmen. Größere Niederschlags- mengen im Winterhalbjahr können diesen Effekt wegen der geringen Speicherkapazität des Bodens nicht abmildern. GENAUE ANALYSE ERFORDERLICH Weil es immer wieder Probleme in Trocken- zeiten gab, sind die Wasserversorger im Süd- schwarzwald auf die Folgen des Klimawandels bereits recht gut vorbereitet. So wurden in den Talauen Brunnen gebohrt und das Leitungsnetz in weiten Bereichen zu Verbünden zusammen- geschlossen. Achtsam müssen aber diejenigen Versorger sein, die nach wie vor überwiegend „niedrigwasserproblematische“ Quellen nutzen. Hier sind Messungen der Schüttungsmengen angezeigt – und eventuell die Schaffung eines zweiten Standbeins durch Verbund mit einem Nachbarversorger oder Brunnenbau. Und noch einen wichtigen Hinweis ergab die Studie: Weil im Untersuchungsgebiet überwiegend Quell- wasser genutzt wird, das sich aus oberflächenna- hem Abfluss speist, können Starkregenfälle zu Schwierigkeiten führen. Dies verstärkt das Aus- treten von trübem und mikrobiologisch belaste- tem Quellwasser. Mit diesem Problem werden die Wasserversorger im Zuge des Klimawandels immer häufiger zu kämpfen haben. AUF DEN PUNKT • Im Zuge des Klimawandels wird es häufiger Trockenperioden, Hitzewel len und Starkregenfälle geben, die höhere Ansprüche an die Wasserversorgung stellen. • Besonders problematisch sind Versorgungsgebiete, die aus- schließlich Rohwasser aus flach- gründigen Quellen nutzen. • Aufgrund von früheren Wasser- mangelsituationen sind die Wasserversorger im Südschwarz- wald bereits gut für die kommen- den Herausforderungen gerüstet. • Die im Rahmen des Projekts erarbeitete Methodik sowie die im Untersuchungsgebiet von einigen Versorgern erfolgreich umgesetz- ten Maßnahmen lassen sich auf andere Regionen übertragen. 0 20 40 60 80 100 120 A bfl us sb ild un g (m m ) Projektgebiet landesweit Jan Feb Mär Apr Mai DezJun Jul Aug Sep Okt Nov Jahresgang der Sickerwasserbildung (Quelle: DVGW - Technologiezentrum Wasser) WASSERHAUSHALT 44 Wie verwaltet man den Wassermangel? L Ein wasserarmes Land ist Baden-Württemberg bestimmt nicht. Aber im Zuge des Klimawandels wird es mehr Trockenperioden geben – und dann weniger Wasser in den Flüssen fließen. Mithin ist es erfor derlich, sich rechtzeitig mit den Folgen niedriger Wasserstände zu befassen und Anpassungsstrategien zu entwickeln. WIE SICH VERÄNDERUNGEN MESSEN LASSEN Wärmekraftwerke mit Kühlwasserbedarf, Lauf- wasserkraftwerke, eine intensive Landwirtschaft, die ihre Kulturen bewässern will, zudem Fracht- schiffe, die auf genügend Wasser unter dem Kiel angewiesen sind: Die Fließgewässer im Land werden vielfach genutzt, und wenn sie zu wenig Wasser führen, hat dies schnell wirtschaftliche Einbußen zur Folge. Niedrigwasserperioden in Folge andauernder Trockenheit stellen eine Belastung des Ökosystems dar und führen zu einer Verminderung der Grundwasserreserven. Kleinere Gewässer drohen ohne regulierende Maßnahmen teilweise ganz auszutrocknen. Die Risiken und drohenden Konflikte werden sich verschärfen, wenn bei längeren Trockenzeiten mehr Energie und Bewässerungswasser benötigt wird, in dieser Zeit aber immer weniger Wasser zur Verfügung steht. Mit dieser Thematik haben sich zwei unter- schiedliche Projekte beschäftigt. „Operationelle Niedrigwasserklassifizierung für baden-württem- bergische Gewässer als Entscheidungsgrundlage zur Anpassung des Niedrigwassermanagements an Klimawandel und Landnutzungsänderungen (NieKlass BW)“ heißt die Studie, die von der Karlsruher Ingenieurgesellschaft HYDRON bearbeitet wurde. Und ein Team der Hochschule PROJEKT 1 Operationelle Niedrigwasserklassifi- zierung für baden-württembergische Gewässer als Entscheidungsgrund- lage zur Anpassung des Niedrigwas- sermanagements an Klimawandel und Landnutzungsänderungen (NieKlass BW) HYDRON GmbH LUBW Berichts-ID U61-W03-N11 PROJEKT 2 Regionale Klimafolgen für die Ener- giewirtschaft in Baden-Württemberg – Eine modellgestützte Analyse von konkurrierenden Wassernutzungen Hochschule Konstanz, Technik, Wirtschaft und Gestaltung LUBW Berichts-ID U60-W03-N10 WASSERHAUSHALT WASSERHAUSHALT 45 AUF DEN PUNKT • Thermische Kraftwerke sind durch ihre Kühlwassernutzung und die Landwirtschaft durch ihren Bewäs- serungsbedarf vom Niedrigwasser besonders betroffen. • Am Neckar können die relativ knappen Wasserreserven mitunter ein Risiko darstellen. • Ein Frühwarnsystem für Niedrig- wasser wurde in den Modellre- gionen Bodensee und Rems-Murr erfolgreich erprobt. • Der Kühlbedarf thermischer Kraft- werke wird sich durch den Ausbau der regenerativen Energiequellen verringern. Konstanz hat sich in Zusammenarbeit mit dem Neustädter Unternehmen UDATA mit den „Re- gionalen Klimafolgen für die Energiewirtschaft in Baden-Württemberg – eine modellgestützte Analyse von konkurrierenden Wassernutzungen“ befasst. EIN FRÜHWARNSYSTEM FÜR NIEDRIGWASSER Hochwasser lässt sich in Baden-Württemberg heute recht gut vorhersagen – dank der bei der LUBW in Karlsruhe ansässigen Hochwasservor- hersagezentrale und dem Wasserhaushaltsmodell LARSIM (Large Area Runoff Simulation Model). Analog zur regionalen Hochwasserfrühwarnung, welche schon mehrere Jahre im Betrieb ist, soll nun ein System aufgebaut werden, mit dem frühzeitig vor Niedrigwasserständen im Land gewarnt werden kann. Dazu wurde LARSIM weiterentwickelt und in zwei Modellregionen getestet: Am Bodensee und im Gebiet der Flüsse Rems und Murr. Ziel ist, eine Karte zu erzeugen, auf der ganze Landkreise der Niedrig- wassersituation entsprechend eingefärbt werden können und so Bereiche deutlich werden, denen man besondere Aufmerksamkeit widmen sollte. Insgesamt ergab die Studie, dass ein solches landesweites Modell möglich ist. Die Arbeit in den beiden Projektgebieten zeigte aber, dass bei der Weiterentwicklung einige Besonderheiten berücksichtigt werden müssen. Maßgeblich sind dabei vor allem punktförmige Quellen wie Karstquellen oder die Abflüsse von Klärwerken, von denen es im Land etwa eintausend gibt. Wie die Erfahrungen im Rems-Murr-Gebiet zeigen, können die Kläranlagen-Abflüsse bei trockenem Wetter mit ausreichender Genauig keit in die landesweite Regionalisierung der Niedrigwas- ser-Kennwerte und die LARSIM-Modelle mit einbezogen werden – wodurch die Niedrigwas- ser-Frühwarnung deutlich besser wird. Ähnliches gilt für bedeutende Karstquellen wie die Radolf- zeller Aach. Nach Ansicht der Autorinnen und Autoren sind nun die technischen Voraus- setzungen für ein landesweites Niedrigwas- ser-Frühwarnsystem geschaffen. KONKURRIERENDE WASSER- NUTZUNGEN Am Beispiel des Neckars wurden mit Hilfe von Fragebögen der aktuelle und künftige Wasserbe- darf von Landwirtschaft und Kraftwerken erfasst sowie die Kläranlagenbetreiber zu den Auswir- kungen von Trockenzeiten befragt. „Die Ergeb- nisse zeigen, dass die relativ knappen Wasser- reserven im Neckargebiet ein Risiko darstellen“ (Projektbericht 2, S. 5), heißt es dazu im Projekt- bericht. Die durchgeführten Betrachtungen bis zum Jahr 2030 lassen erkennen, dass sich das Risiko in der Landwirtschaft wegen des wach- senden Ausbaus der Bewässerung erhöhen wird. Zu den möglichen Gegenmaßnahmen zählen eine wassersparende Bewässerungstechnik und trockenresistentere Sorten, ferner eine boden- schonende Bearbeitung sowie die Speicherung von Wasser im regenreichen Frühjahr. Bei den thermischen Kraftwerken ist bis 2030 wegen des Ausbaus der erneuerbaren Energien damit zu rechnen, dass sich der Kühlwasserbedarf halbiert. Andererseits wird die Menge des Abwassers abnehmen, das in den Neckar eingeleitet wird. Dazu merkt die Studie an: „Hier könnten eine Veränderung des Abwassersystems und eine Überleitung und Speicherung von Wässern aus dem Bodensee zusätzliche Wassermengen bei extremen Niedrigwassersituationen bereitstellen“ (Projektbericht 2, S. 5). Einflussfaktoren auf den Niedrigwasserstand am Neckar und Ansprüche an den Fluss; Schwarze Pfeile: Ab- / Zunahme von Wassermengen Graue Pfeile: Mengenverlagerung (Quelle: Hochschule Konstanz) WASSERHAUSHALT 46 Wie verwundbar ist die Wirtschaft im Land? L Keine Frage, der Klimawandel trifft auch die heimische Wirtschaft. Die Frage ist nur, wie verletzlich die unterschiedlichen Branchen, vor allem für extreme Wetterereignisse, sind. Und wie sie sich am besten an die Veränderungen anpassen bzw. vor Schäden schützen. DIE ACHILLESFERSEN DER INDUSTRIE Hagelstürme zerstören Anlagen und Produkte, Überschwemmungen setzen Industriebetriebe unter Wasser, Hitze belastet Mitarbeitende und Produktionsanlagen. Diese lokalen Auswirkun- gen auf die Wirtschaft sind schon heute spürbare Folgen des Klimawandels. Hinzu kommen die vielfältigen wirtschaftlichen Verflechtungen, nicht zuletzt mit Zulieferern. Daher haben auch hiesige Betriebe zu leiden, wenn es in anderen Teilen Deutschlands oder gar der Welt zu wetter- oder klimabedingten negativen Auswir- kungen oder Ausfällen kommt. Im Folgenden soll anhand von drei Projekten gezeigt werden, wie und wo die heimische Industrie klimabedingt besonders verwundbar ist – und wie man das ermitteln kann. VULNERABILITÄTSANALYSE „Analyse der industriellen Vulnerabilität gegen über klimawandelinduzierten Risiken in Ballungsräumen in Baden-Württemberg“ heißt das Projekt, mit dem sich ein Team vom Karlsruher Institut für Technologie (KIT) befasst hat. Dabei wurde ein indikatorbasierter Ansatz gewählt und auf die Modellregion Stuttgart über- tragen. Allgemeine Indikatoren waren Fläche, Ein woh ner zahl und Industriegebäude der 480 unter suchten Kommunen, ferner Klimafaktoren wie die Zahl der Hitzetage. Zudem wurden struk tur spezifische Daten erfasst, etwa Energie- PROJEKT 1 Analyse der industriellen Vulner- abilität gegenüber klimawandel- induzierten Risiken in Ballungsräu- men in Baden-Württemberg Karlsruher Institut für Technologie LUBW Berichts-ID U83-W03-N18 PROJEKT 2 Sensititvitätsbereiche von bran- chenspezifischen Klimakenngrößen in Baden-Württemberg – die „Sensitivitätsampel“ Karlsruher Institut für Technologie LUBW Berichts-ID U83-W03-N22 PROJEKT 3 Folgen des Klimawandels auf massengutaffine Unternehmen in Baden-Württemberg – Verwundbarkeiten und modellhafte Anpassungsmaßnahmen Hochschule Konstanz Technik, Wirtschaft und Gestaltung LUBW Berichts-ID U83-W03-N25 WIRTSCHAFT WIRTSCHAFT 47 verbrauch oder Verflechtungsgrad. Die Analysen ergaben prozentuale Veränderun- gen und damit „Hot-Spots“ der industriellen Vulnerabilität in den einzelnen Kommunen wie auch in der Region. So lässt sich beispielsweise aufzeigen, dass die Wirtschaft rund um Stuttgart besonders unter Hitzetagen zu leiden hat, die auf der Schwäbischen Alb weniger. Insgesamt ergab sich eine vergleichsweise hohe Fragilität der chemischen Industrie, der Wasser- und Ener- gieversorgung sowie spezieller metallverarbei- tenden Industriezweige. Gerade diese aber sind – wie die Automobil- oder die Elektroindustrie – in der Region Stuttgart von besonderer Bedeu- tung. Bemerkenswert ist zudem eine Erfahrung, die sich aus den Experteninterviews ergeben hat: Demnach sagen Risiko- und Logistikmanagerin- nen und -manager, dass für das aktive Manage- ment langfristiger und abstrakter Risiken – wie dem Klimawandel – neben dem operativen Tagesgeschäft keine Zeit bleibe. EINE SENSITIVITÄTSAMPEL Branchenspezifische Klimakenngrößen zu er- mitteln, mit denen sich deren Empfindlichkeit gegenüber dem Klimawandel in naher und fer- ner Zukunft ermitteln lässt, das war das Ziel des Projekts „Sensititvitätsbereiche von branchen- spezifischen Klimakenngrößen in Baden-Würt- temberg – die Sensitivitätsampel“. Die Studie, die vom Süddeutschen Klimabüro am KIT durchgeführt wurde, basiert auf der standardi- sierten Befragung von 23 baden-württembergi- schen Kommunen und vertiefenden Gesprächen mit 32 Expertinnen und Experten von Fach- institutionen, Unternehmen und Städten. Das Ergebnis ist für eine Vielzahl von sogenannten Klimakenngrößen – etwa von Frost tagen im Jahr mit günstigen Wetterbedingungen für Eiswein über Hitze- und Trocken perioden bis zum Spazierwetter – in landesweiten Karten darge- stellt. Interessant ist, dass die Sensitivität der Kommunen gegenüber dem Klimawandel erst dann erkannt wird, wenn ein extremes Wetter- ereignis dazu zwingt. Dies zeigt sehr anschaulich die Aussage eines befragten Experten: „Entweder AUF DEN PUNKT • Die Vulnerabilitätsanalyse in der Modellregion Stuttgart ergab eine vergleichsweise hohe Anfällig- keit der chemischen Industrie, der Wasser- und Energieversor- gung sowie mancher metallverar- beitenden Industriezweige. • In Baden-Württemberg wurde die Empfindlichkeit gegenüber klimarelevanten Indikatoren in Karten dargestellt. Die Klimasen- sitivität wird aber oft erst erkannt, wenn ein Extremwetterereignis eingetreten ist. • Die Klimaabhängigkeit von Unter- nehmen, die mit Massengütern umgehen, ist vor allem beim Schiffstransport gegeben. Kleinere Schiffe und größere Lagerkapazi- täten sind effektive Anpassungs- maßnahmen. es ist Not da oder eine Finanzierung, damit in einem Bereich etwas getan wird.“ MASSENTRANSPORT UND KLIMA- WANDEL Besonders vom Klimawandel betroffen sind Unternehmen, die von Massenguttransporten auf Binnenwasserstraßen und in eingeschränk- tem Maße auf der Schiene abhängen. Wie sich hier der Klimawandel auswirkt, zeigt das Projekt „Folgen des Klimawandels auf massengutaffine Unternehmen in Baden-Württemberg – Ver- wundbarkeiten und modellhafte Anpassungs- maßnahmen“ auf, das von der Hochschule Konstanz bearbeitet wurde. Basis war eine Befragung von 400 Unternehmen, an der vor allem Firmen aus der Chemie- und Montan- industrie sowie Transporteure von Steinen und Erden teilgenommen haben. Dabei sind sich die Unternehmen zum großen Teil bewusst, dass sie dem Klimawandel gegenüber vulnerabel sind, was insbesondere für Schifftransporte bei Niedrigwasser in den Herbstmonaten September und Oktober gilt sowie in geringerem Maße bei Hochwasser. Allerdings hat erst eine Minderheit bereits Anpassungsmaßnahmen vorgenommen. Das im Zuge des Klimawandels drohende Hauptproblem: Zu große Schiffe mit entspre- chendem Tiefgang und zu geringe Lagerkapa- zitäten. Dies ließe sich vor allem mit kleineren Schiffen und in zweiter Linie mit größeren Lagerkapazitäten lösen – wobei in Zeiten mit guten Fahrrinnentiefen die Schiffe zusätzliche Ladung transportieren könnten, um die Lager wieder aufzufüllen. Mit beiden Anpassungsmaß- nahmen lässt sich die Vulnerabitlität deutlich senken, sie sind allerdings mit höheren Kosten verbunden: Kleinere Schiffe benötigen mehr Personal, größere Lager mehr Platz. Welche Maßnahmenkombination am effektivsten ist und wie sie sich individuell vor Ort umsetzen lässt, muss allerdings im konkreten Einzelfall geprüft und berechnet werden. WIRTSCHAFT 48 Werden wir künftig mehr ernten? L Die Temperaturen steigen, die Vegetationsperiode wird länger. Die Pflanzen könnten mithin im Zuge des Klimawandels länger wachsen und mehr Ertrag liefern. Doch die Zusammenhänge sind komplexer. PHÄNOLOGIE UND ERTRAG Phänologie ist die Lehre von den Erschei- nungen. Auf die Landwirtschaft übertragen bedeutet dies die verschiedenen Lebensphasen von Kulturpflanzen, wie etwa der Beginn der Feldbestellung, der Beginn der Gelbreife, also der Verfärbung der Ähren von grün und zu gelb, oder der Erntebeginn. Wie sich dieses Erschei- nungsbild im Rahmen des Klimawandels ändert, hat das Projekt „Lokale, regionale und landes- weite Auswirkungen des Klimawandels auf die Phänologie von Feldfrüchten in Baden-Württem- berg“ untersucht. Grundlage war der Vergleich von exakt 2.090.894 phänologischen Einzelbeob- achtungen in der Zeit zwischen 1951 und 2011 aus den Bereichen Wildpflanzen, landwirtschaft- liche Kulturen, Obstgehölze und Wein. Um den Einfluss klimatischer Änderungen zu quanti- fizieren, müssen möglichst lange Zeiträume untersucht und miteinander verglichen werden. Differenziert wurde deshalb nach den beiden Zeiträumen 1961 bis 1990 und 1991 bis 2011. In dem Folgeprojekt „Die Ertragsdaten der Feldfrüchte in Baden-Württemberg und ihre Beziehung zu Klima und Boden“ wurden die Ertragsentwicklungen von vier Getreidearten sowie von Silo- und Körnermais, Zuckerrüben, Kartoffeln und Winterraps untersucht. Auch hier wurden die Daten, die seit 1953 erhoben werden, mit Klimadaten in Beziehung gesetzt. Bearbeitet wurden beide Projekte vom Landwirt- schaftlichen Technologiezentrum Augustenberg in Kooperation mit der Uni Hohenheim. PROJEKT 1 Lokale, regionale und landesweite Auswirkungen des Klimawandels auf die Phänologie von Feldfrüchten in Baden-Württemberg LUBW Berichts-ID U81-W03-N13 PROJEKT 2 Die Ertragsdaten der Feldfrüchte in Baden-Württemberg und ihre Beziehung zu Klima und Boden Landwirtschaftliches Technologie- zentrum Augustenberg – LTZ LUBW Berichts-ID U81-W03-N15 LANDWIRTSCHAFT LANDWIRTSCHAFT 49 LÄNGERE VEGETATIONSPERIODE Die höheren Lufttemperaturen spielen die Schlüsselrolle beim früheren Einsetzen vieler phänologischer Phasen. Eine wichtige, soge - nannte echte phänologische Phase, ist die Gelb- reife der Feldfrüchte, weil sie nur von Witterung und Klima beeinflusst ist. Im Gegensatz dazu hängt etwa der Beginn von Feldbestellung und Ernte auch von den Managemententschei dungen ab, wes halb man hier von unechten phänolo- gischen Phasen spricht. Bei der Gelbreife zeigt sich der Klimwandel besonders deutlich: Sie tritt bei Winterweizen, -roggen, -gerste und Hafer seit 1991 etwa zwei Wochen früher als im Zeit- raum 1960 bis 1991 ein. Allerdings werden diese Feldfrüchte nur wenige Tage früher geerntet, so dass die Vegetationszeit vom Erscheinen der ers- ten Blättchen, dem sogenannten Auflaufen, bis zur Ernte insgesamt nur um zwei Tage verkürzt ist. Aufgrund der angewandten Agrarmethoden, ebenso wie aufgrund der angebauten Sorten, wird bei diesen Getreidearten der Vorteil einer potenziell längeren Vegetationszeit bisher kaum genutzt. Hier könnten neue Sorten und Bewirt- schaftungsmethoden Verbesserungen bringen. Winterraps und Zuckerrüben stehen sogar rund eine Woche länger auf dem Feld. Dies dürfte vor allem auf die Einführung neuer Sorten zurück- zuführen sein – was zeigt, dass bei der Phäno- AUF DEN PUNKT • Bei vielen Kulturpflanzen verkürzt sich die Zeit bis zur Reife. • Die Ernte erfolgt insbesondere bei Getreidearten aber meist nur wenige Tage früher, was vor allem auf die agrartechnische Bewirt- schaftung sowie auf die Sorten- wahl zurückzuführen sein dürfte. • Die Vorteile einer längeren Vegeta- tionsperiode werden noch nicht voll ausgeschöpft. • Die höheren Temperaturen haben sich seit 1991 ertragssteigernd ausgewirkt. • Einzelne Hitzetage wirken sich kaum auf den Ertrag aus; erhebliche Einbußen gab es aber durch die starke Hitzewelle im Sommer 2003. logie neben dem Klimawandel auch andere Faktoren in der Landwirtschaft eine wichtige Rolle spielen. Dies wird auch im Vergleich mit Wildpflanzen deutlich, bei denen die phänolo- gischen Veränderungen durch den Klimawandel viel ausgeprägter sind als bei Kulturpflanzen. DIFFERENZIERTE ERTRÄGE Das wichtigste Ergebnis der Ertragsstudie ist, dass sich die höheren Temperaturen offenbar positiv auf die Erträge auswirken. In den meisten Landkreisen waren warme Jahre jedenfalls ertrag- reicher als weniger warme – eine Beobachtung, die vor allem auf die ursprünglich kälteren Land- kreise zutrifft. Dies führt die Autorinnen und Autoren der Studie zu der Annahme, „dass in den kälteren Landkreisen Erträge noch durch Temperatur limitiert werden, höhere Durch- schnittstemperaturen also noch ertragssteigernd wirken“ (Projektbericht 2, S. 116). Die Wasser- versorgung wiederum hat den Ertrag zumindest bisher noch nicht begrenzt. Bei Hitzeperioden tolerieren die Pflanzen offenbar einzelne Tage mit Extremwerten recht gut. Andererseits brachte der Hitzesommer 2003 deutliche Ertragsein- bußen. „Auch wenn derzeit solche Episoden rar sind – die Landwirtschaft tut gut daran, sich über Anpassungsmaßnahmen rechtzeitig auf solche Extremwetterlagen vorzubereiten“ (Projekt- bericht 2, S. 117), rät die Studie. Veränderung des Hektarertrags bei Zunahme der Durchschnittstemperatur (Quelle: Landwirtschaftliches Technologiezentrum Augustenberg) 20 30 40 50 60 70 80 E rt ra g W in te rw ei ze n (d t/ ha ) Jahresmittel Lufttemperatur Baden-Württemberg (°C) 6 7 8 9 10 11 LANDWIRTSCHAFT 50 Bodenwasser: Mal zu wenig, mal zu viel L Bei Dürre verliert der Boden Wasser, was den Kulturpflanzen nicht gut bekommt. Und bei Starkregen muss der Boden plötzlich viel zu viel Wasser aufnehmen. Zwei Projekte haben untersucht, wie Anpassung daran funktionieren kann. KLIMAWANDEL ÄNDERT BODEN- WASSERGEHALT Im Zuge des Klimawandels werden die Nieder- schläge in der Vegetationsperiode wohl zurück- gehen. Und die höheren Temperaturen sorgen in dieser Zeit dafür, dass mehr Wasser ver- dunstet. Damit aber dürften Trockenperioden zunehmen – verbunden mit der Gefahr von Ertragseinbußen. Dem könnte eine „konservie- rende“ Bodenbearbeitung, bei der mehr Wasser im Boden zurückgehalten wird, entgegenwirken. Andererseits sind bei Starkregenereignissen Maßnahmen gefragt, mit deren Hilfe der Boden mehr Niederschlagswasser aufnehmen kann – und die zudem dazu beitragen, dass weniger Boden erodiert und weggeschwemmt wird. WIE ACKERBODEN WASSER ZURÜCKHÄLT Pflug, Mulchsaat, Direktsaat: Am Landwirt- schaftlichen Technologiezentrum Augustenberg in Karlsruhe wurde mit drei unterschiedlichen Messsondentypen die Bodenfeuchte in Ver- suchsfeldern gemessen: „Bodenwasserhaushalt und konservierende Bodenbearbeitung“ hieß das Projekt, das im Zuge von zwei Kampagnen 2011 und 2014 Daten lieferte. Eingebettet waren die Messungen in langjährige Versuche, die unter anderem an Äckern bei Dossenheim und Biberach durchgeführt werden. Mit dem Pflug wird der Boden meist 20 bis 30 Zentimeter tief bearbeitet und dabei gewendet. PROJEKT 1 Bodenwasserhaushalt und konser- vierende Bodenbearbeitung (2 Teile) Landwirtschaftliches Technologie- zentrum Augustenberg - LTZ LUBW Berichts-ID U61-W03-N10 (Teil 1) LUBW Berichts-ID U61-W03-N12 (Teil 2) PROJEKT 2 Klimaanpassung durch Stärkung des Wasser- und Bodenrückhalts in Außenbereichen (KliStaR) Geomer GmbH / Büro bodengut LUBW Berichts-ID U83-W03-N26 LANDWIRTSCHAFT LANDWIRTSCHAFT 51 Bei der Mulchsaat werden nur die oberen 10 bis 15 Zentimeter durchmischt, der Boden aber nicht gewendet. Und bei der Direktsaat erfolgt praktisch gar keine Bodenbearbeitung mehr, die Saat wird nur in einen Schlitz im Boden eingebracht. Mit den beiden letztgenannten Methoden soll das Erosionsrisiko verringert und die Bodenfeuchte erhöht werden – beides mögliche Anpassungsmaßnahmen an den Klima- wandel. Der Einfluss der Bodenbearbeitung zeigte sich 2014 so: Bei der Pflugvariante war der Boden in den oberen 20 Zentimetern trockener als bei Mulch- und Direktsaat. Ab 40 Zentimeter war der Boden dann bei allen drei Saatvarianten gleich feucht. Die bodenphysikalischen Unter- suchungen ergaben, dass unter Pflug die Grob- und Mittelporen weniger Wasser führten als die Varianten mit konservierender Bodenbearbei- tung, so dass die potenziell höhere Speicher- kapazität für pflanzennutzbares Wasser im Ober- boden nicht ausgenutzt werden konnte. Ent- scheidend für die Unterschiede war vermutlich die Mulchdecke aus abgestorbenen Pflanzen- resten, die bei Mulch- und vor allem Direktsaat vorhanden war. Sie konnte dort die Evaporation von Wasser aus den oberen Bodenschichten teilweise verhindern, auf der gepflügten Fläche fehlte jedoch diese „Evaporationsbremse“. Diese Unterschiede können in trockenen Jahren rele- vant werden, liegen doch dann die Erträge der Direktsaat häufig über den anderen Parzellen in AUF DEN PUNKT • Eine geänderte Bodenbearbeitung könnte in Trockenzeiten die Erträge erhöhen. • Wenn der Boden umgepflügt wird, enthält er in der Vegetationspe- riode weniger Bodenfeuchte als bei Mulchsaat sowie vor allem im Vergleich zu Direktsaat. • Die Erosion von Böden bei Starkregenereignissen kann durch eine Reihe von Maßnahmen – etwa durch Ackerrandstreifen – gebremst werden. • Kosten-Nutzen-Rechnungen zeigen, ob sich dies im Einzelfall auch wirtschaftlich lohnt. Dossenheim, während in niederschlagsreicheren Normaljahren die Pflugvarianten die besten Erträge aufweisen. WIE LÄSST SICH EROSION VERHINDERN? Im Einzugsgebiet der Glems, einem Flüsschen westlich von Stuttgart, kam es 2009 und 2010 zu extremen Starkregenereignissen. Probleme bei extremen Niederschlägen sind unter anderem die Erosion und die Abschwämmung von Böden. „Ziel von Anpassungsmaßnahmen sollte es insofern sein, das Wasser möglichst direkt in die Böden der Landschaft infiltrieren zu lassen“ (Projektbericht 2, S. 7), schreibt dazu das Auto- renteam vom Stuttgarter Büro für nachhaltige Bodennutzung, der geomer GmbH in Heidel- berg und der Forstwirtschaftlichen Versuchs- und Forschungsanstalt Baden-Württemberg in Freiburg in der Studie „Klimaanpassung durch Stärkung des Wasser- und Bodenrückhalts in Außenbereichen (KliStaR)“. Dazu wurden in der Studie Informationen wie etwa Karten zum Oberflächenabfluss und zur Bodenerosion jetzt und in der Zukunft erstellt. Konkret wurden bei Planungsrunden, Feldbe- gehungen und Informationsveranstaltungen mögliche Maßnahmen in Land- und Forst- wirtschaft erörtert sowie ausgewählte Maß- nahmen gemeinsam mit den zuständigen Akteuren umgesetzt. Zu den 22 vorgestellten Verbesserungsmöglich keiten zählten Acker- randstreifen, Einsaat auf gemulchtem Boden, Zwischenfrüchte, der Rück bau von Wegen oder die Aufforstung von Feldgehölzen. Den Kosten für solche Maßnahmen stehen mögliche Schäden bei Starkregenereignissen gegenüber, wobei ein vollgelaufener Keller beispielswei- se mit bis zu 10.000 Euro zu Buche schlägt. Die Kosten-Nutzen-Rechnung für einen 50-Jahres-Zeitraum zeigt dann, ob sich eine Maßnahme in einem umgrenzten Gebiet lohnt. Neben konkreten Verbesserungsvorschlägen für ausgewählte Gemeinden wurde ein Maßnah- menkatalog erstellt, der auch für andere Kom- munen im Land als Ratgeber dienen kann. Trockenrisse im Ackerboden LANDWIRTSCHAFT 52 Von Kirschen und Schweinen L Die Ernte von pflanzlichen Produkten sowie die Zucht von Tieren sind die Ertragssäulen der Landwirtschaft. Zwei Projekte zeigen auf, wie sich diese Basis im Zuge des Klimawandels ändern wird – und was die Landwirtschaft dagegen tun kann. FOLIEN SCHÜTZEN SÜSSKIRSCHEN Obstkulturen sind durch extreme Nieder- schläge und hier vor allem durch Hagel stark gefährdet. Beide Ereignisse dürften im Zuge des Klimawandels häufiger werden. Um einem Totalausfall oder erheblichen Ernteeinbußen vorzubeugen, werden zunehmend Hagelnetze und Folien über die Baumkulturen errichtet. Diese Schutzmaßnahmen können aber auch nachteilig sein, etwa weil durch die Beschattung die Reifung der Früchte beeinträchtigt wird. In einem Modellprojekt untersuchte das Ravens- burger Kompetenzzentrum Obstbau Bodensee, wie „Geschützte Produktion und nachhaltiger Süßkirschenanbau im Kontext von Klimaver- änderungen“ künftig aussehen können. Hierzu wurden drei Süßkirschpflanzungen mit zwei un- terschiedlichen Schutzfoliensystemen abgedeckt und eine teilautomatisierte Bewässerung einge- baut. Sensoren sollten die mikroklimatischen Verhältnisse in den Parzellen erfassen. Dabei ergab sich, dass die Temperaturunterschie- de geringer ausfallen als erwartet. Die doppella- gige Folie reduzierte außerdem das Strahlungs- angebot um etwa ein Drittel – „ein nicht uner- heblicher Anteil“ (Projektbericht 1, S. 27), wie der Projektleiter urteilt. Dies komme einem stets bedeckten Himmel gleich. Auch Hagelnetze verringern die Strahlung um 15 Prozent bei weißen und 25 Prozent bei schwarzen Netzen. Insgesamt wurde die verfügbare Strahlung unter PROJEKT 1 Geschützte Produktion und nachhal- tiger Süßkirschenanbau im Kontext von Klimaveränderungen Kompetenzzentrum Obstbau- Bodensee LUBW Berichts-ID U81-W03-N14 PROJEKT 2 Teil 1: Entwicklung und Optimie- rung sensorgestützter komplexer Regelstrategien für die optimale Stallklimatisierung in frei belüfteten Offenfrontställen für Schweine Teil 2: Automatisierte Zuluftsteue- rung für zwangsbelüftete Schweine- ställe mit Unterflurzuluft zur Reduk- tion von Hitzestress an heißen Tagen und geringer Krankheitsprävalenz im Jahresverlauf Bildungs- und Wissenszentrum Boxberg LUBW Berichts-ID U81-W03-N12 (Teil 1) LUBW Berichts-ID U81-W03-N16 (Teil 2) LANDWIRTSCHAFT LANDWIRTSCHAFT 53 den Schutzfolien aber noch stärker durch die Art des Baumschnitts – mehr oder weniger lichter Aufbau der Krone – bestimmt. Teilweise war nur noch 16 Prozent der Strahlung verfügbar. Und noch eine wichtige Erkenntnis lieferte die Studie: Einbußen bei der Qualität der Früchte ließen sich in den geschützten Parzellen nicht feststellen. Im Gegenteil verhindern die Folien bei Regen „umfassend“, dass die Früchte aufplat- zen. So bleiben sie länger am Baum und reifen besser. Das führt in Verbindung mit der Tröpf- chenbewässerung zudem zu größeren Kirschen. SCHWEINE KÖNNEN NICHT SCHWITZEN Heiße Sommer bedeuten für Schweine Stress, denn sie können nicht schwitzen bzw. haben keine Schweißdrüsen. Im konventionellen Stall wird es für die Tiere daher an heißen Tagen oft sehr ungemütlich – und im Zuge der Klimaän- derung wird dies immer häufiger der Fall sein. Das aber ist weder im Sinne des Tierwohls noch im wirtschaftlichen Interesse der Züchterin oder des Züchters. Deshalb wurden am Bildungs- und Wissenszent- rum Boxberg als Anpassung an den Klima wan del zwei neue Stallbelüftungs-Strategien ent wickelt und erprobt. Zum einen sogenannte Offen front - ställe, die sich frei durch die Öffnung der Fronten und fakultativ der Rückseiten be lüf ten lassen, was insbesondere an heißen Tagen gut für die Tiere ist. Darüber hinaus spart diese Stallform auch Energie und führt zu geringeren CO2-Emissionen. Zum anderen wurden geschlossene wärmegedämmte Ställe mit dem System „Unterflurzuluft“ belüftet, bei dem der Betonunterbau des Gebäudes als kostengünstige Tauscherfläche eingesetzt wird und zudem als Pufferspeicher wirkt. Damit wird der Tierbereich im Sommer um bis zu 6 °C im Vergleich zur Außentemperatur gekühlt. Inzwischen haben mehrere Zucht- und Mastbetriebe dieses Lüf- tungskonzept übernommen. Um beide Strategien weiter zu optimieren, wurden in Boxberg bzw. auf einem Praxisbetrieb zwei weitere Entwicklungsprojekte durchgeführt. Während im ersten Projekt Regelstrategien und Öffnungstechniken für einen besseren Betrieb der Offenfrontställe entwickelt wurden, diente das zweite Projekt „Automatisierte Zuluftsteue- rung für zwangsbelüftete Schweineställe mit Un- terflurzuluft“ zur Reduktion von Hitzestress an heißen Tagen und geringer Krankheitsprävalenz im Jahresverlauf dazu, das System mit Hilfe von unterschiedlichen Belüftungen und Regelungen effizienter und funktionssicherer zu machen. Inzwischen arbeiten beide Systeme so sicher, dass es auch im Winter zu keinen kalten Zug luft- erscheinungen und Kälteeinbrüchen im Tierbe- reich kommen kann – womit die Vorteile der Systeme für die Sommerkühlung nicht konter- kariert werden. „Die Regel- und Steuerungs- strategien sind etabliert bzw. standardisiert und können von weiteren Betrieben übernommen werden“ (Projektbericht 2, Teil 1, S. 36), heißt es abschließend in der Studie. Hagelschutznetze im Kirschenanbau AUF DEN PUNKT • Trotz ihrer schattierenden Wirkung und der damit verbundenen Redu- zierung der Strahlung führen Schutzfolien im Anbau von Süßkir- schen nicht zu einer verminderten Qualität der Früchte. • Im Gegenteil schützen die Folien davor, dass die Früchte bei Regen aufplatzen. So reifen sie besser und werden größer. • Eine innovative Luftzufuhr in Schweineställen – Offenfrontställe oder Unterflurzuluft – vermindert im Sommer den Hitzestress der Tiere. • Eine angepasste Regel- und Steue - rungstechnik sorgt dafür, dass es bei dieser Art der Belüftung auch im Winterhalbjahr zu keinen Temperatureinbrüchen kommt, die das Wohl der Tiere gefährden könnten. LANDWIRTSCHAFT 54 Wald und Klima: Ohne Bewusstseinswandel geht es nicht L Der Klimawandel bringt viele Veränderungen für die Forstwirtschaft. Spezielle Veranstaltungen sollen dabei helfen, das Bewusstsein in den zuständigen Fach- kreisen zu schärfen. Darüber hinaus sollen Analysen zur Verletzlichkeit des Waldes besonders kritische Flächen aufzeigen. KATASTROPHEN UND KALAMITÄTEN Die Forstwirtschaft ist seit Jahrhunderten an forstliche Katastrophen und Kalamitäten ge- wöhnt und kann im Schadensfall ganz gut damit umgehen. Klimatisch gesehen gab es in den ver- gangenen 300 Jahren aber kaum Veränderungen. Doch nun kommen neue Herausforderungen auf die Forstwirtschaft zu: Stürme, Trockenstress und die Anfälligkeit gegenüber Krankheiten und Schädlingsbefall werden im Zuge des Klimawan- dels zunehmen, zudem werden sich die Stand- ortbedingungen für viele Baumarten verändern. PROJEKT 1 Klimawandel – Bewusstseinswandel: Proaktiver Aufbau eines Risiko- und Krisenmanagements Forstliche Versuchs- und Forschungs- anstalt Baden-Württemberg – FVA LUBW Berichts-ID U10-W03-N10 PROJEKT 2 Entscheidungshilfe Wald und Klima – Modellprojekt: Vulnerabilitätsanalyse auf Waldbestandsebene Forstliche Versuchs- und Forschungs- anstalt Baden-Württemberg – FVA LUBW Berichts-ID U82-W03-N10 FORSTWIRTSCHAFT Mit dem Klimawandel sind Veränderungen für den Wald wie auch für die Forstwirtschaft verbunden. KLIMAWANDEL WALD WALD- BESITZER FORSTWIRTSCHAFT 55 DEN BLICK FÜR KLIMARISIKEN SCHÄRFEN Daher ist es unerlässlich, darüber nachzudenken, wie mit dem Faktor Risiko „proaktiv“ umzuge- hen ist. Dies aber erfordert nichts weniger als einen Bewusstseinswandel. Davon jedenfalls ist die Forstliche Versuchs- und Forschungsanstalt (FVA) in Freiburg überzeugt und hat deshalb das Projekt „Klimawandel – Bewusstseinswandel: Proaktiver Aufbau eines Risiko- und Krisenma- nagements“ ins Leben gerufen. Ziel war, ein Konzept für ein Seminar mit dem Titel „Klima- folgen und Risikomanagement“ zu entwickeln, das sich an Privatwaldbesitzerinnen und -besitzer, an Land- und Forstwirtschaftsämter sowie an Umwelt- und Naturschutzbehörden richtet. Danach wurden die entsprechenden Ver- anstaltungen durchgeführt, um so das Risikobe- wusstsein der Fachleute zu schärfen und sie für die Folgen des Klimawandels zu sensibilisieren. „Was meinen Sie, übertreiben Wissenschaftler, Politik und Medien die negativen Folgen des Klimawandels?“ So lautete die Eingangsfrage zu Beginn jeder Veranstaltung. Ja, nein, das kann noch niemand sagen – die Antworten, angezeigt in Form farbiger Karten, waren schnell ausge- zählt. Dann folgte der Vortrag, bei dem es um Klimawandel und Risikomanagement ging, aber auch um psychologisches Einfühlungsvermögen: Schließlich ist das Übersehen von Risiken ein sehr verständliches Verhalten, das zu den psychologischen Grundmustern des Menschen gehört. Wenn man dies als Zuhörerin oder Zu- hörer verinnerlicht hat, ist man auch aufgeschlos- sener für mögliche Anpassungsmaßnahmen, zumal wenn sie als sogenannte No-Regret-Maß- nahmen für den Wald ohnehin sinnvoll sind. Offenbar verfehlten die Vorträge ihre beabsich- tigte Wirkung nicht. Wenn am Schluss der Ver- anstaltung die Eingangsfrage nach den negativen Folgen des Klimawandels wiederholt wurde, war fast immer ein „Umdenken“ der Teilnehmerin- nen und Teilnehmer hin zu „die Darstellungen sind realistisch“ (Projektbericht 1, S. 14) sichtbar, wie es in der Studie heißt. Auch die stets durch- AUF DEN PUNKT • Um die Folgen des Klimawandels und die damit verbundenen Risi - ken für die Forstwirtschaft richtig einschätzen zu können, ist ein Bewusstseinswandel erforderlich. • Seminare und Veranstaltungen, die den Klimawandel und das Risikomanagement zum Thema haben, können diesen Bewusst- seinswandel fördern. • Die Verletzlichkeit von Waldbestän- den lässt sich mit einem modell- haften System erfassen, das eine Wahrscheinlichkeitsverteilung in vier Vulnerabilitätsklassen liefert, die in Karten dargestellt werden kann. geführten Evaluationen der Veranstaltungen waren im Regelfall sehr gut bis hervorragend. WIE VERLETZLICH IST DER WALD? Wenn sich Waldbesitzerinnen und -besitzer und Forstexpertinnen und -experten mit den zu erwartenden forstlichen Auswirkungen und Risi- ken des Klimawandels befassen wollen, müssen sie wissen, wie es um „ihren“ Wald bestellt ist. Dies aber erfordert eine detaillierte Analyse der Vulnerabilität, der Verletzlichkeit, und zwar baumartspezifisch und räumlich hoch aufgelöst. Ein Werkzeug zur Lösung dieser Aufgabe hat ein anderes Team der FVA entwickelt. „Entschei- dungshilfe Wald und Klima – Modellprojekt: Vulnerabilitätsanalyse auf Waldbestandsebene“ heißt das Projekt, bei dem mathematische Berechnungen im Vordergrund stehen: Bayesian Belief Networks (BBN) heißt das Modell, das die Basis für das von den Autoren entwickelte „Entscheidungsunterstützungssystem“ bildet. Das „graphische statistische Modell“ wird beispielsweise in der medizinischen Dia gnostik genutzt, um Zusammenhänge zwischen Sym- ptomen und Krankheiten zu beschreiben und damit die Wahrscheinlichkeit verschiedener Krankheitsursachen abzuschätzen. Auf den Forst bezogen liefert BBN eine Wahrscheinlichkeits- verteilung von vier Vulnerabilitätsklassen. Somit lassen sich mit diesem Modell prinzipiell kriti- sche Areale identifizieren, wie das im Rahmen des Projekts durchgerechnete Beispiel für die Fichte im Raum Rastatt / Baden-Baden zeigt. Interessant ist, dass von den knapp 60 Prozent der Flächen, die derzeit die Vulnerabilitätsklasse „gering“ aufweisen, bei Berücksichtigung des mittleren A2-Klimaszenarios knapp 85 Prozent diesen Status bis zum Jahr 2020 behalten. Bei den restlichen gut 15 Prozent ist künftig von einer „hohen“ Vulnerabilität auszugehen. FORSTWIRTSCHAFT 56 Wie klimagestresste Wälder besser wachsen L Es ist statistisches Wissen gefragt, wenn man mit Modellen die Folgen des Klimawandels auf die Leistungsfähigkeit von Wäldern prog nos tizieren will – und diese dann verbessern möchte. Zwei Projekte der Forstlichen Versuchs- und Forschungsanstalt (FVA) haben sich dieser Herausforderung gestellt. DIE WÄLDER VERÄNDERN SICH Die Auswirkungen des Klimawandels werden schneller voranschreiten als die Wälder mit ihrem natürlichen Anpassungspotenzial darauf reagieren können. Das zumindest ist die derzei- tige Ansicht der Forstexpertinnen und -experten. Aus diesem Grund halten sie auch menschliche Eingriffe für erforderlich, um die Klima-Anpas- sungsfähigkeit der Wälder zu erhöhen – und damit auch deren künftige Produktivität zu erhalten. Ein guter Indikator für die Leistungsfä- higkeit eines Standorts hinsichtlich des Wachs- tums einer bestimmten Baumart – die Bonität – ist die mittlere Höhe der dortigen Bäume bei einem bestimmten Alter. Erfahrungsgemäß ist die Baumhöhe im Gegensatz zum Durchmesser kaum von Durchforstungsmaßnahmen abhängig. Erwartet wird zudem, dass sich die Leistungs- fähigkeit der Wälder in den unterschiedlichen Regionen des Landes im Zuge des Klimawandels auch in verschiedene Richtungen entwickeln könnte. In heute schon warmen und trockenen Waldstandorten könnte sich die Produktivität verringern, wogegen feuchtere und kühlere Mittelgebirgslagen vom Klimawandel profitieren dürften. Zudem könnten sich unterschiedliche Auswirkungen auf die einzelnen Baumarten ergeben. PROJEKT 1 Prognose der Leistungsfähigkeit der Wälder Baden-Württembergs im Klimawandel Forstliche Versuchs- und Forschungs- anstalt Baden-Württemberg – FVA LUBW Berichts-ID U82-W03-N14 PROJEKT 2 Erhöhung struktureller Diversität als mögliches Instrument zur Klimaan- passung: Einfluss auf das Zuwachs- verhalten in Bergmischwäldern Forstliche Versuchs- und Forschungs- anstalt Baden-Württemberg - FVA LUBW Berichts-ID U82-W03-N16 FORSTWIRTSCHAFT FORSTWIRTSCHAFT 57 AUF DEN PUNKT • Die Leistungsfähigkeit eines Waldstandorts – die Bonität – lässt sich mit statistischen Modellen beschreiben. • Tendenziell dürfte die Bonität der Waldstandorte künftig in den niedrigeren Höhenlagen eher absinken und in den höheren Lagen der Mittelgebirge ansteigen. • Die Mischung von Bäumen vielfäl- tiger Dimensionen auf kleiner Fläche erhöht die Wuchskraft von Bäumen und Waldbeständen und fördert damit die Anpassungsfähig- keit von Bergmischwäldern an den Klimawandel. • Diese Strukturvielfalt lässt sich mit waldbaulichen Maßnahmen fördern. PROGNOSE FÜR DIE LEISTUNGS- FÄHIGKEIT Aber lassen sich diese Annahmen auch mit Hilfe statistischer Modelle bestätigen? Mit dieser Frage beschäftigte sich die FVA im Rahmen des Projekts „Prognose der Leistungsfähigkeit der Wälder Baden-Württembergs im Klimawandel“. Von besonderem Interesse war dabei die Länge der Vegetationszeit, weil diese das Baumwachs- tum maßgeblich beeinflusst – und weil sie sich durch die höheren Temperaturen verlängern wird. Wichtig ist zudem die Summe der Nieder- schläge innerhalb der Vegetationsperiode. Die Datenbasis für die untersuchten sechs Baumar- ten – Fichte, Tanne, Douglasie, Kiefer, Eiche und Buche – lieferten die seit Mitte der 1980er Jahre durchgeführten Waldinventuren. Das Ergebnis der Modellierungen ist in farbigen Karten mit den zu erwartenden Veränderungen dargestellt. Dabei wurden die Bonitäten für un- terschiedliche Klimaszenarien erstellt. Insgesamt könnten bei zwei Szenarien die Bonitäten aller sechs Baumarten in den niedrigeren Höhenlagen absinken und in den höheren Lagen der Mittel- gebirge ansteigen. Tannen- und Eichenbestände könnten künftig auch auf größeren Flächen in niedrigeren Mittelgebirgslagen leistungsfähiger werden. Und im Alpenvorland dürften auch künftig hoch produktive Bedingungen für das Fichtenwachstum vorhanden sein. Die Kiefer wiederum könnte vergleichsweise wenig vom Klimawandel betroffen sein. GUT GERÜSTET: STRUKTURREICHE MISCHWÄLDER Monotone Fichtenkulturen, die per Kahlschlag geerntet werden, sind hierzulande nicht das Ziel der Forstwirtschaft, sondern struktur- und artenreiche Wälder. Ob diese auch gegen den Klimawandel besser gerüstet sind, das hat die FVA im Projekt „Erhöhung struktureller Diver- sität als mögliches Instrument zur Klimaanpas- sung: Einfluss auf das Zuwachsverhalten in Berg- mischwäldern“ untersucht. Das Projekt befasste sich speziell mit den Bereichen Biodiversität, Re- silienz – also Selbstheilungskraft – sowie Wachs- tumseffizienz an 16 Versuchsorten mit Fichte, Tanne und Buche. Drei waldbauliche Formen wurden untersucht: Plenterwald, also ein sich stetig verjüngernder Hochwald mit kleinen und großen Bäumen in direkter Nachbarschaft, die Überführung zum Plenterwald sowie der Femel- schlag, bei dem der Wald ungleichmäßig ausge- lichtet wird und Bäume gruppen- und horst- weise gefällt werden. Das Ergebnis der Studie für die heimischen nadelholzdominierten Bergmischwälder lässt sich so zusammenfassen: „Auch unter steigenden Temperaturen lässt sich durch eine Erhöhung der Strukturdiversität (Vielfalt der Baumdimen- sionen) das Wachstum von Bäumen und Wald- beständen fördern. Damit können mit waldbauli- chen Maßnahmen die anzunehmenden negati- ven Auswirkungen des Klimawandels teilweise kompensiert werden“ (Projektbericht 2, S. 26). % +15 +5 +2 -2 -5 -15 -25 % +15 +5 +2 -2 -5 -15 -25 Veränderung der Leistungsfähigkeit der Fichte bis 2040 und bis 2070 (Quelle: Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg) FORSTWIRTSCHAFT 58 Wald im Wandel L Forstexpertinnen und -experten erwarten, dass es der Fichte in Baden-Württemberg an manchen Standorten im Zuge des Klimawandels schlechter gehen könnte. Andererseits wird der Douglasie eine hohe Toleranz gegenüber Trockenheit zugesprochen – was künftig ein Vorteil sein dürfte. Aber ist das wirklich so? WIE MAN VERÄNDERUNGEN MISST Eigentlich ist der Zusammenhang trivial: Um- weltveränderungen führen zu einem veränder- ten Wachstum von Bäumen und Wäldern. Selbstverständlich ist auch, dass eine Baumart in erster Linie robust gegenüber Schadorganis- men sein muss, um als zukunftsfähig zu gelten. Was sich aber in der Theorie einfach anhört, ist in der Praxis nicht so leicht in Wirkung und Ausmaß zu erfassen. Dieser Aufgabe haben sich zwei Projekte gewidmet, die an der Forstlichen Versuchs- und Forschungsanstalt in Freiburg durchgeführt wurden. Untersucht wurden die „Langfristige Veränderungen der Bonität von Fichten-Waldstandorten in Baden-Württemberg“ sowie die „Prüfung der Zukunftsfähigkeit der Douglasie aus waldhygienischer Sicht“. Dabei ging es darum, geeignete Methoden für die Bear- beitung der jeweiligen Fragestellung zu finden. Ferner sollten Aussagen über die Entwicklung der beiden Baumarten gemacht werden. WAS WIRD AUS DER FICHTE? Die Bonität eines Standorts beschreibt als Leistungskennwert die integrative Wirkung der für den Zuwachs relevanten Umweltfaktoren, die das Wachstum des dortigen Waldes oder einer dort wachsenden Baumart bestimmen – und damit auch die Produktivität, wobei der Holz- zuwachs wirtschaftlich am wichtigsten ist. Ein wichtiger Indikator ist das Höhenwachstum der Bäume, das weitgehend unabhängig von forstli- chen Maßnahmen ist. Allerdings gibt es Hinwei- se, dass sich das Höhenwachstum an Standorten derselben Bonität in klimatisch unterschiedli- chen Regionen unterscheidet. Um dies zu be- FORSTWIRTSCHAFT PROJEKT 1 Langfristige Veränderungen der Bonität von Fichten-Waldstandorten in Baden-Württemberg Forstliche Versuchs- und Forschungs- anstalt Baden-Württemberg – FVA LUBW Berichts-ID U82-W03-N13 PROJEKT 2 Prüfung der Zukunftsfähigkeit der Douglasie aus waldhygienischer Sicht Forstliche Versuchs- und Forschungs- anstalt Baden-Württemberg – FVA LUBW Berichts-ID U82-W03-N15 FORSTWIRTSCHAFT 59 AUF DEN PUNKT • Die Bonität eines Standorts ist nicht konstant, sondern kann sich im Laufe der Zeit verändern. Dies lässt sich am besten anhand der mittleren jährlichen Raten der Bonitätsveränderungen beurteilen. • Die Bonitäten der Fichte stiegen seit Mitte der 1950er Jahre bis in die 1990er Jahre deutlich an. Seither scheinen sie wieder leicht abzunehmen. • Stellenweise werden Douglasien durch Schadorganismen in Kombi- nation mit anderen Umweltfak- toren deutlich in ihrer Vitalität beeinträchtigt. Momentan kommt die Douglasie damit aber besser zurecht als andere Baumarten. • Wie sich dies im Zuge des Klima- wandels ändern könnte, ist derzeit noch ungewiss. rücksichtigen, wurden verschiedene Höhenmo- delle entwickelt. Problematisch ist aber, dass bei diesen Modellen die Bonität über die betrachte- ten Zeiträume hinweg als konstant angenommen wird. Genau dies aber könnte sich derzeit unter dem Einfluss des Klimawandels ändern – und sollte deshalb im Zuge des Projekts berücksich- tigt werden. Dabei wurden „die mittleren jährli- chen Raten der Bonitätsveränderungen als Basis für die Identifizierung möglicher Veränderungen der Produktivität eines Standorts herangezogen“, beschreibt die Studie das methodisch neue Vor- gehen. Das Ergebnis ist eindeutig: Die Bonitäten der Fichte in Südwestdeutschland haben sich in der Vergangenheit erheblich verändert. Waren sie bis Mitte der 1950er Jahr noch relativ stabil, stiegen sie bis in die 1990er Jahre deutlich an. Seit etwa der Jahrtausendwende scheinen sie aber wieder leicht abzunehmen – wobei noch nicht klar ist, ob dieser Trend längerfristig ist oder nur eine kurz- bis mittelfristige Schwankung darstellt. Deutlich wird auch, das Standorte mit geringerer Ausgangsbonität bei der Produktivität stärker zugelegt haben als bereits gute Standorte. KRÄNKELT DIE DOUGLASIE? Seit die Douglasie in der ersten Hälfte des ver- gangen Jahrhunderts verstärkt angepflanzt wird, gibt es Anzeichen für Verluste ihrer Vitalität. Diese wurden in den vergangenen Jahren an manchen Standorten immer auffälliger und führten teilweise zum Absterben von Bäumen. Als Ursache für die offensichtlichen Nadel- verluste wird derzeit vor allem der Befall mit Schadorganismen vermutet, wobei insbesondere der Schüttepilz Phaeocryptopus gaeumannii in Betracht kommt. Demgegenüber hat die vorliegende Studie nun aufgezeigt, dass in der Regel mehrere unter- schiedliche Faktoren die Douglasien schwächen können. Dabei ist auch der Standort von Bedeu- tung: So scheinen sandige Böden in der Rhein- ebene bei Trockenheit für zusätzlichen Stress zu sorgen, der Bäume für Schadorganismen anfäl- liger macht. Zudem vermuten die Autorinnen und Autoren aufgrund verschiedener Hinweise, „dass zumindest ein Teil der eintretenden Nadelverluste auch der Douglasienwolllaus zuzurechnen sind, die im Zuge verschiedener Formularänderungen im Waldschutzmelde- wesen nicht mehr erfasst wurde“ (Projektbericht 2, S. 67), wie es in der Studie heißt. Welche Aus- wirkungen die aktuell bedeutsamen Schädlinge im Zuge des Klimawandels auf die Douglasien haben könnten, lässt sich derzeit noch nicht aus- reichend abschätzen. „Momentan scheinen diese aber noch deutlich geringer zu sein als im Ver- gleich mit anderen Baumarten“ (Projektbericht, S. 68), schreiben die Autorinnen und Autoren. -0,2 -2 -0,1 0 0 2 0,1 4 0,2 6 0,3 8 ∆ H B on (m ) ku m ul ie rt e A bw ei ch un ge n (m ) 1920 19701930 19801950 20001940 19901960 Jährliche Abweichungen Kumulierte AbweichungenVeränderung der Oberhöhenbonität der Fichte (Quelle Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg) FORSTWIRTSCHAFT 60 RESÜMEE UND WEI- TERENTWICKLUNG Resümee und Weiter- entwicklung L KLIMOPASS hat sich seit 2011 zu einem wichtigen Instrument für die Anpassung an den Klimawandel in Baden-Württemberg entwickelt. Aufbauend auf den Erfahrungen der vergangenen KLIMOPASS- Kampagnen wurde das Programm weiterentwickelt und unterstützt nun stärker die Umsetzung der Anpas- sungsstrategie, die seit 2015 einen landesweiten Handlungsrahmen zum Umgang mit den Folgen des Klimawandels aufzeigt. EVALUATION Im Rahmen der Evaluation wurden die KLIMO PASS-Kampagnen der Jahre 2011 bis 2015 genauer betrachtet. In diesem Zeitraum wurden 66 Projekte mit einem Volumen von 6,4 Millionen Euro durchgeführt. Die Projekte erstreckten sich über die Handlungsfelder der Anpassungsstrategie. Die Projekte konzentrierten sich stark auf die Großstädte und Ballungsräume Stuttgart, Karlsruhe, Freiburg und Heidelberg. Aber auch in ländlichen Räumen konnten wichtige Erkenntnisse über den Umgang mit den Folgen des Klimawandels gewonnen werden. Von den angesprochenen Zielgruppen waren die Forschungseinrichtungen mit 65 Prozent am stärksten vertreten. Der Schwerpunkt lag damit auf der Erarbeitung von Wissensgrundlagen. Die Aktualität und der Anwendungscharakter der Themen zeigen sich insbesondere darin, dass 61 Prozent der Ergebnisse bereits während und unmittelbar nach Projektende Anwendung gefunden haben. Die Kommunen zeigten sich dabei als zentrale Akteure der konkreten Umset- zung von Anpassungsmaßnahmen. Ein starkes Zeichen für den bisherigen Erfolg ist die Zufrie- denheit der Teilnehmerinnen und Teilnehmer – 93 Prozent würden wieder einen Projektantrag stellen. RESÜMEE UND WEITERENTWICKLUNG 61 In zwei Expertenworkshops konnten Anreg un- gen für die Weiterentwicklung von KLIMOPASS gewonnen werden. Vertreterinnen und Ver- treter der beteiligten Ministerien, ehemalige Projektnehmerinnen und Projektteilnehmer, Vertreterinnen und Vertreter aus Fach- und Branchenverbänden, der Wissenschaft sowie Regionalverbänden und Kommunen brachten dabei ihre Erfahrungen und Ideen ein. WEITERENTWICKLUNG Die Ergebnisse der Evaluation und die Diskus- sionen in den Workshops dienten als wichtige Grundlage für die Weiterentwicklung von KLIMOPASS. In den vergangenen Jahren konnten bisher durch die zahlreichen Forschungsprojekte eine wertvolle Wissensbasis aufgebaut und wichtige Erfahrungen für die praktische Umsetzung in der Klima- anpassung gewonnen werden. Seit Frühjahr 2018 werden diese Erkenntnisse als Impulsgeber für die Umsetzung von Anpassungsmaßnahmen genutzt und das Thema Anpassung an die Folgen des Kli- mawandels in Baden-Württemberg verstärkt in die Breite getragen. Im Rahmen der neuen KLIMO- PASS Förderrichtlinie werden nun insbesondere kommunale Anpassungsvorhaben vom Einstieg bis zur Umsetzung unterstützt. RESÜMEE UND WEITERENTWICKLUNG 62 Projektübersicht BEVÖLKERUNGSSCHUTZ Ein Entscheidungsunterstützungssystem basierend auf nutzergenerierten Geodaten zur Unterstützung der Alarm- und Einsatzplanung im Hochwassermanagement Universität Heidelberg | Prof. Dr. Alexander Zipf | Berichts-ID U10-W03-N11 | 2019 BIODIVERSITÄT Invasive Arten als Fischnahrung im Bodensee Landwirtschaftliches Zentrum Baden-Württemberg | Dr. Roland Rösch | U81-W03-N11 | 2012 Auswirkungen des Klimawandels auf die Pflanzenwelt Baden-Württembergs am Beispiel der Stadtflora Institut für Botanik und Landschaftskunde | Thomas Breuning | U51-W03-N10 | 2012 Auswirkungen des Klimawandels auf die Insektenfauna (ausgewählte Artengruppen) Büro Schanowski | Arno Schanowski | U51-W03-N11 | 2013 Exotische Gehölze und Diversität der Ektomykorrhiza- Pilze im urbanen Grünflächenbereich Staatliches Museum für Naturkunde Karlsruhe | Dr. Markus Scholler | U83-W03-N30 | 2017 BODEN Organische Kohlenstoffvorräte der Böden Baden-Württembergs in Abhängigkeit von Bodentyp, Bodenart, Klima und Landnutzung Regierungspräsidium Freiburg | Dr. Frank Waldmann | U72-W03-N11 | 2014 Einfluss des Klimawandels auf die ökologischen Funktionen des Bodens durch Humusabbau – Entwick- lung eines Instruments zur Früherkennung von Humusveränderungen in typischen Böden Baden-Würt- tembergs Universität Hannover | Prof. Dr. Georg Guggenberger | U72-W03-N10 | 2012 Die KLIMOPASS-Projektberichte werden auf der Internetseite der LUBW im Bereich "Publikationen" veröffentlicht. Dort sind die Berichte unter der Berichts-ID zu finden. Die Berichts-ID kann auch für Suchmaschinen im Internet genutzt werden. PROJEKTÜBERSICHT 63 GESUNDHEIT Untersuchungen zum Vorkommen der viszeralen Leishmaniose in Baden-Württemberg Universität Hohenheim, Institut für Zoologie | Prof. Dr. Ute Mackenstedt | U50-W03-N10 | 2012 Raumklima und Befindlichkeit / Wohnzufriedenheit der Bewohner in energetisch teilsanierten Wohnungen Landesgesundheitsamt Baden-Württemberg | Dr. Guido Fischer | U50-W03-N12 | 2013 Optimierung der Hitzewarnung in Stuttgart (HITWIS) Landeshauptstadt Stuttgart | Dr. Ulrich Reuter | U50-W03-N11 | 2013 Untersuchung der Einschleppung, Ausbreitung und Bekämpfung des Japanischen Buschmoskitos Gesellschaft zur Förderung der Stechmückenbekämpfung e. V. (GFS) | Dr. Norbert Becker | U51-W03-N12 | 2014 Risiken von Raumtemperatur bei Hitze für ältere Menschen in Stuttgart Robert Bosch Gesellschaft für medizinische Forschung mbH | Dr. Ulrich Lindemann | U50-W03-N13 | 2018 Bekämpfung der Hohen und der Stauden-Ambrosie mittels unterschiedlicher Methoden sowie Durchführung örtlich orientierter Öffentlichkeitsarbeit Stadt Karlsruhe | Ursula Roth | U50-W03-N14 | 2018 Untersuchungen zur Effektivität von Monitoring- und Bekämpfungsmaßnahmen für die Entwicklung eines Maßnahmenkatalogs zur integrierten Bekämpfung der Asiatischen Tigermücke in Baden- Württemberg Gesellschaft zur Förderung der Stechmückenbekämpfung e.V. (GFS) | Dr. Norbert Becker | U50-W03-N17 | 2018 Klimatische und infrastrukturelle Risikoanalyse für kommunale Maßnahmen in Bezug auf die Etablierung von Aedes albopictus in Baden-Württemberg Gesellschaft zur Förderung der Stechmückenbekämpfung e. V. (GFS) | Dr. Norbert Becker | U50-W03-N15 | 2019 KLIMAFOLGEN/MONITORING Klimawandel und Luftqualität (KLIMO-LUFT) – Eine Vorstudie für Baden-Württemberg Karlsruher Institut für Technologie | Dr. Bernhard Vogel | U43-W03-N10 | 2012 PROJEKTÜBERSICHT 64 Entwicklung eines Konzepts zum Monitoring von Klimafolgen und Anpassungs- maßnahmen anhand eines Modellraums in Baden-Württemberg Albert-Ludwigs-Universität Freiburg | Prof. Dr. Werner Konold | U13-W03-N12 | 2012 Bestandsaufnahme von klimatologischen Messdaten Baden-Württembergs und Erstellung einer Metadatenbank Karlsruher Institut für Technologie | Prof. Dr. Christoph Kottmeier | U41-W03-N10 | 2013 Perspektiven der Luftqualität durch zukünftige anthropogene Emissionen und durch ein sich änderndes Klima in Baden-Württemberg Karlsruher Institut für Technologie | Dr. Bernhard Vogel | U43-W03-N11 | 2013 Analyse und statistische Bewertung eines zeitlich und räumlich hochaufgelösten Ensembles regionaler Klimaprojektionen für Baden-Württemberg HYDRON GmbH | Dr. Kai Gerlinger | U41-W03-N11 | 2013 Ensembles hoch aufgelöster regionaler Klimasimulationen zur Analyse regionaler Klima änderungen in Baden-Württemberg und ihre Auswirkungen Karlsruher Institut für Technologie | Dr. Gerd Schädler | U41-W03-N13 | 2015 Etablierung eines regionalspezifischen Monitoring von Klimafolgen und Anpassungs maß nahmen im Modellraum Freiburg / Dreisamtal Albert-Ludwigs-Universität Freiburg | Prof. Dr. Werner Konold | U13-W03-N13 | 2015 Landschaft im Klimawandel - Anpassungsstrategie für den Naturpark Südschwarzwald Naturpark Südschwarzwald e.V. | Roland Schöttle | U83-W03-N24 | 2016 Landschaft im Klimawandel – Neue Schutz- und Nutzkonzepte für den Naturpark Südschwarzwald Naturpark Südschwarzwald e.V. | Roland Schöttle | U83-W03-N37 | 2019 Studie zur konsequenteren Umsetzung von kommunalen Anpassungsmaßnahmen Landeshauptstadt Stuttgart | Dr. Ulrich Reuter | U82-W03-N21 | 2019 LANDWIRTSCHAFT Entwicklung und Optimierung sensorgestützter komplexer Regelstrategien für die optimale Stallklimatisierung in frei belüfteten Offenfrontställen für Schweine Bildungs- und Wissenszentrum Boxberg | Dr. Wilhelm Pflanz | U81-W03-N12 | 2012 Bodenwasserhaushalt bei konservierender Bodenbearbeitung Landwirtschaftliches Technologiezentrum Augustenberg | Dr. Holger Flaig | U61-W03-N10 | 2012 PROJEKTÜBERSICHT 65 Regulierung von Schildläusen im Apfelanbau mit Nützlingen Kompetenzzentrum Obstbau Bodensee | Dr. Christian Scheer | U81-W03-N10 | 2012 Lokale, regionale und landesweite Auswirkungen des Klimawandels auf die Phänologie und den Ertrag von Feldfrüchten in Baden-Württemberg Landwirtschaftliches Technologiezentrum Augustenberg | Dr. Holger Flaig | U81-W03-N13 | 2013 Geschützte Produktion und nachhaltiger Süßkirschenanbau im Kontext von Klimaveränderungen Kompetenzzentrum Obstbau Bodensee | Michael Zoth | U81-W03-N14 | 2014 Bodenwasserhaushalt und Konservierende Bodenbearbeitung Landwirtschaftliches Technologiezentrum Augustenberg | Dr. Holger Flaig | U61-W03-N12 | 2014 Die Ertragsdaten der Feldfrüchte in Baden-Württemberg und ihre Beziehung zu Klima und Boden Landwirtschaftliches Technologiezentrum Augustenberg | Dr. Holger Flaig | U81-W03-N15 | 2014 Automatisierte Zuluftsteuerung für zwangsbelüftete Schweineställe mit Unterflurzuluft zur Reduktion von Hitzestress an heißen Tagen und geringer Krankheitsprävalenz im Jahresverlauf Bildungs- und Wissenszentrum Boxberg | Dr. Wilhelm Pflanz | U81-W03-N16 | 2015 Einsatz von Plasma zur Dekontamination von Agrarprodukten nach der Ernte Kompetenzzentrum Obstbau Bodensee | Dr. Manfred Büchele | U81-W03-N17 | 2016 Klimaanpassung durch Stärkung des Wasser- und Bodenrückhalts in Außenbereichen (KliStaR) Geomer GmbH / bodengut | Dr. Norbert Billen | U83-W03-N26 | 2017 Bewässerungs-Prognose Baden-Württemberg (BeProBW) – Ein interaktives Beratungs- und Planungswerkzeug zur Visualisierung und Bilanzierung des landwirtschaftlichen Bewässerungsbedarfs im Klimawandel Geomer GmbH | Dr. André Assmann | U83-W03-N35 | 2018 STADT-/REGIONALPLANUNG Städtebaulicher Rahmenplan Klimaanpassung für die Stadt Karlsruhe Stadt Karlsruhe | Martin Kratz | U83-W03-N11 | 2013 Das Konzept der Anpassungskapazität als Teil der Vulnerabilitätsbestimmung in der Stadt- und Raumplanung - Evaluation und Weiterentwicklung in der Praxis Hemberger & Utz UG | Dr. Christoph Hemberger, Jürgen Utz | U83-W03-N16 | 2014 PROJEKTÜBERSICHT 66 Quantitative Bestimmung des Adaptions- und Mitigationspotenzials von urbanen Grünflächen und Räumen auf das thermische Bioklima im 21. Jahrhundert Albert-Ludwigs-Universität Freiburg | Prof. Dr. Andreas Matzarakis | U41-W03-N12 | 2014 Anpassung der Siedlungsstruktur im Verdichtungsraum Karlsruhe an den Klimawandel. Fortsetzung des Projektes „Städtebaulicher Rahmenplan Klimaanpassung“ Stadt Karlsruhe | Martin Kratz | U83-W03-N12 | 2014 Kühlwirkung der extensiven Dachbegrünungsvegetation – Langzeitmessungen an in Baden-Württem- berg etablierten Gründächern und Experimente mit einzelnen Pflanzenarten und Pflanzenmischungen Universität Hohenheim | Dr. Jürgen Franzaring | U83-W03-N13 | 2015 KlippS – Klimaplanungspass Stuttgart Landeshauptstadt Stuttgart | Robert Schulze Dieckhoff | U83-W03-N17 | 2015 Klimaaktive baubotanische Siedlungsstrukturen, Bautypologien und städtische und Planungswerkzeuge Infrastrukturen: Modellprojekte Universität Stuttgart | Dr. Ferdinand Ludwig | U83-W03-N15 | 2015 Klimawandel, Stadtklima und Gebäudeenergieeffizienz: Wechselwirkungen und Handlungskonzepte für eine nachhaltige Stadt Technische Universität Dortmund | Prof. Dr. Fazia Ali-Toudert | U83-W03-N27 | 2016 Entwicklung modellhafter Anpassungsstrategien der Regionalen Energie- und Verkehrs infrastruktur in der Region Stuttgart an den Klimawandel Karlsruher Institut für Technologie | Prof. Dr. Joachim Vogt | U83-W03-N28 | 2016 Kommunale Klimaanpassung durch Landschaftsplanung: Das Untere Remstal als Modell für Baden-Württemberg Technische Universität Berlin | Prof. Dr. Stefan Heiland | U83-W03-N21 | 2016 KLIBIKOM - Klimaanpassung in der Biodiversitätsstrategie einer Kommune, am Beispiel der Stadt Radolfszell am Bodensee Deutsche Umwelthilfe e. V. | Robert Spreter | U83-W03-N23 | 2016 Planungsempfehlung für eine klimawandelgerechte Entwicklung von Konversionsflächen – Modellvorhaben Heidelberg-Südstadt Stadt Heidelberg | Dr. Raino Winkler | U83-W03-N29 | 2017 Abschätzung der Wirkung von Anpassungs- und Minderungsmaßnahmen in Ballungsraum gebieten Baden-Württembergs Karlsruher Institut für Technologie | Dr. Gerd Schädler | U83-W03-N32 | 2017 PROJEKTÜBERSICHT 67 Zielkonflikt Klimakomfort – Nachverdichtung: Entwicklung von Lösungsstrategien zur klima- wandelangepassten Siedlungsentwicklung der Stadt Singen Stadt Singen | Markus Zipf | U83-W03-N39 | 2018 Umsetzung der kommunalen Klimaanpassung in die Bauleitplanung im Pilotprojekt der Entwick- lung des Geländes der Spinelli Barracks / Grünzug Nordost in Mannheim – KomKlim – Karlsruher Institut für Technologie, Institut für Regionalwissenschaft | Prof. Dr. Joachim Vogt | U83-W03-N38 | 2018 Klimawandel und Klimaanpassung: Zukunftsfähige Gesundheits-, Lebensumfeld- und Erholungs- vorsorge in der VVG Bühl-Ottersweier Stadt Bühl | Barbara Thévenot | U83-W03-N33 | 2018 Modellprojekt Quartier- und objektbezogene Verwundbarkeitsanalyse bezüglich Schutzgut mensch- liche Gesundheit am Beispiel der Stadt Reutlingen Stadt Reutlingen | Reinhard Braxmeier | U83-W03-N40 | 2019 TOURISMUS Zukunftmobilität in der Ferienregion Schwarzwald Steinbeis Beratungszentrum Trossingen | Christian Klaiber | U82-W03-N15 | 2012 Touristischer Handlungsleitfaden Klimawandel ift GmbH | Jan Kobernuss | U83-W03-N31 | 2015 Strategien zum Klimawandel – Risiken in Chancen wandeln: nachhaltige Geschäftsfelder im Schwarzwaldtourismus Hochschule Konstanz – Technik, Wirtschaft und Gestaltung | Prof. Dr. Tatjana Thimm | U83-W03-N36 | 2019 WALD- UND FORSTWIRTSCHAFT Entscheidungshilfe Wald und Klima – Modellprojekt: Vulnerabilitätsanalyse auf Wald-Bestandesebene Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA) | Dr. Gerald Kändler | U82-W03-N10 | 2012 Umweltveränderungen im Spiegel des Wachstums baden-württembergischer Hauptbaumarten: Extraktion und Analyse des umweltbedingten Wachstumssignals aus langfristigen Messzeitreihen Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA) | Dr. Ulrich Kohnle | U82-W03-N12 | 2012 PROJEKTÜBERSICHT 68 Beitrag der Waldbewirtschaftung zur Abmilderung des Klimawandels – Auswirkungen von Waldbehandlungsstrategien auf die Kohlenstoffspeicherung in Baden-Württemberg Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA) | Dr. Gerald Kändler | U82-W03-N11 | 2012 Klimawandel – Bewusstseinswandel: Proaktiver Aufbau eines Risiko- und Krisenmanagements Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA) Dr. Christoph Hartebrodt | U10-W03-N10 | 2013 Langfristige Veränderungen der Bonität von Fichten-Waldstandorten in Baden-Württemberg Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA) | Dr. Ulrich Kohnle | U82-W03-N13 | 2013 Prognose der Leistungsfähigkeit der Wälder Baden-Württembergs im Klimawandel Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA) | Dr. Arne Nothdurft | U82-W03-N14 | 2014 Prüfung der Zukunftsfähigkeit der Douglasie aus waldhygienischer Sicht Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA) | Dr. Jörg Schumacher | U82-W03-N15 | 2015 Erhöhung struktureller Diversität als mögliches Instrument zur Klimaanpassung: Einfluss auf das Zuwachsverhalten in Bergmischwäldern Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA) | Dr. Axel Albrecht | U82-W03-N16 | 2015 Kann Trockenstresstoleranz von Buchen über Durchforstungseingriffe erhöht werden? Albert-Ludwigs-Universität Freiburg | Prof. Dr. Jürgen Bauhus | U82-W03-N17 | 2016 Weißtanne und Douglasie als Ersatzbaumarten für Fichte: Vergleichende Untersuchungen zur Resilienz entlang eines Höhentransekts vom Rheintal bis in die montanen Lagen des Schwarzwaldes Albert-Ludwigs-Universität Freiburg | Prof. Dr. Jürgen Bauhus | U82-W03-N18 | 2016 Modellierung der klimatischen Standorteignung der forstlich relevanten Baumarten Karlsruher Institut für Technologie | Dr. Klara Dolos | U82-W03-N19 | 2016 Ökologische und waldbauliche Anpassungsstrategien an den Klimawandel zur langfristigen Sicherung der Auwaldökosysteme im NSG Rastatter Rheinaue Karlsruher Institut für Technologie | Prof. Dr. Gregory Egger | U82-W03-N20 | 2018 PROJEKTÜBERSICHT 69 Der Pinienprozessionsspinner in Südwestdeutschland - eine szenarische Risikoanalyse für einen potentiell invasiven Schmetterling, der gleichermaßen die Gesundheit von Baum und Mensch bedroht Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA) | Dr. Jörg Schumacher | U50-W03-N16 | 2018 Sturmgefährdungskarten für Baden-Württembergs Wälder als Grundlage für mittel- und langfristige Planungen Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA) | Dr. Axel Albrecht | U82-W03-N21 | 2018 Kann über Bodenschutzkalkungen die Trockenheitstoleranz von Fichte und Buche verbessert werden? Albert-Ludwigs-Universität Freiburg | Prof. Dr. Jürgen Bauhus | U82-W03-N22 | 2019 WASSERHAUSHALT Auswirkung des Klimawandels auf die Entwicklung der Nitratbelastung im Grundwasser am Beispiel des Gesamteinzugsgebiets des Langenauer Donaurieds Ingenieurgesellschaft Prof. Kobus und Partner GmbH | Dr. Ing. Ulrich Lang | U62-W03-N10 | 2012 Operationelle Niedrigwasserklassifizierung für baden-württembergische Gewässer als Entscheidungs- grundlage zur Anpassung des Niedrigwassermanagements an Klimawandel und Landnutzungs- änderungen (NieKlass BW) HYDRON GmbH | Dr. Ingo Haag-Wanka | U61-W03-N11 | 2013 Vulnerabilitätsanalyse von Wasserversorgungsunternehmen im südlichen Schwarzwald hinsichtlich des Klimawandels DVGW – Technologiezentrum Wasser | Dr. Stefan Stauder | U83-W03-N14 | 2015 Entwicklung eines modellhaften Strukturkonzeptes zur Anpassung der Wasserversorgung an den Klimawandel und dessen Umsetzung in den Landkreisen Schwarzwald-Baar-Kreis und Tuttlingen DVGW – Technologiezentrum Wasser | Dr. Stefan Stauder | U83-W03-N34 | 2018 Nutzungskonflikte bei zukünftigen Niedrigwasserzuständen – Analyse und Ableitung von Handlungsempfehlungen an den Beispielen Murg und Jagst Hochschule Konstanz – Technik, Wirtschaft und Gestaltung | Prof. Dr. Benno Rothstein | U60-W03-N11 | 2019 PROJEKTÜBERSICHT 70 WIRTSCHAFT Analyse der industriellen Vulnerabilität gegenüber klimawandelinduzierten Risiken in Ballungsräumen in Baden-Württemberg Karlsruher Institut für Technologie | Prof. Dr. Frank Schultmann | U83-W03-N18 | 2014 Energie- und gesamtwirtschaftliche Effekte des Klimawandels in Baden-Württemberg – Auswirkungen auf Energienachfrage und -angebot und die Ökonomie Universität Stuttgart | Dr. Ulrich Fahl | Bericht Ökonomie: U83-W03-N19; Bericht Verkehr: U83-W03-N20 | 2015 Regionale Klimafolgen für die Energiewirtschaft in Baden-Württemberg – Eine modellgestützte Analyse von konkurrierenden Wassernutzungen Hochschule Konstanz - Technik, Wirtschaft und Gestaltung | Prof. Dr. Benno Rothstein | U60-W03-N10 | 2015 Folgen des Klimawandels auf massengutaffine Unternehmen in Baden-Württemberg – Verwundbarkeiten und modellhafte Anpassungsmaßnahmen Hochschule Konstanz - Technik, Wirtschaft und Gestaltung | Prof. Dr. Benno Rothstein | U83-W03-N25 | 2016 Sensititvitätsbereiche von branchenspezifischen Klimakenngrößen in Baden-Württemberg Karlsruher Institut für Technologie | Dr. Hans Schipper | U83-W03-N22 | 2016 PROJEKTÜBERSICHT 71 IMPRESSUM HERAUSGEBER Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg Kernerplatz 9 | 70182 Stuttgart | Telefon 0711-126-0 | www.um.baden-wuerttemberg.de LUBW Landesanstalt für Umwelt Baden-Württemberg Griesbachstraße 1 | 76185 Karlsruhe | Telefon 0721-5600-0 | www.lubw.baden-wuerttemberg.de TEXT, GESTALTUNG LUBW Landesanstalt für Umwelt Baden-Württemberg Gruppe für ökologische Gutachten Detzel & Matthäus Dr. Klaus Zintz Aichele & Jackmuth, Büro für Gestaltung REDAKTION Dr. Kai Höpker, Daniel Schulz-Engler, Dr. Harald Gebhardt LUBW Landesanstalt für Umwelt Baden-Württemberg Die Broschüre ist klimaneutral auf Recycling papier gedruckt BILDNACHWEIS Titelbild © Aichele & Jackmuth | S. 2 © UM | S. 3 © LUBW | S. 4 und S. 5 © leolintang/shutter- stock.com | S. 6 und S. 7 © NASA images/shutterstock.com | S. 8 und S. 9 © BrunoRosa / shutter- stock.com | S. 10 © Alena Stalmashonak/shutterstock.com | S. 10 © Ueberflutete_Strasse_mit_Warn- schild_Klimawandel_animaflora-Fotolia_97468535_X | S. 11 © Rawpixel.com/shutterstock.com | S. 12 © Simon Dux/shutterstock.com | S. 13 © IBS GmbH, Lersch | S. 14 © Shcherbinator / shutter- stock.com | S. 16 Funny © Solution Studio / shutterstock.com | S. 17 © Naturpark Südschwarzwald | S. 18 2x, S. 19 © Landeshauptstadt Stuttgart und LUBW | S. 20 © Lisa F. Young / shutterstock.com | S. 22 © Wikipedia frei verfügbar | S. 23 © beboy / shutterstock.com | S. 24 © Claudio Divizia / shut- terstock.com | S. 26 © Stadt Karlsruhe, LUBW | S. 28 © Olga Kashubin/shutterstock.com| S. 29 © Landeshauptstadt Stuttgart, LUBW | S. 30 © LUBW | S. 31 © Stadt Karlsruhe | S. 32 © Architec- teur / shutterstock.com | S. 33 © Stadt Ludwigsburg, LUBW | S. 34 und S. 35 2x © LUBW | S. 35 © LUBW | S. 36 © shutternelke / shuttertock.com | S. 37 © Universität Hohenheim | S. 38 Landesme- dienzentrum LMZ451320 | S. 39 © LUBW | S. 40 © Megan Maree owdle / shutterstock.com | S. 42 © Yuri Samsonov / shutterstock.com | S. 44 Umgehungsgewässer als Lebensraum beim Kraftwerk Alb- bruck-Dogern © UM | S. 46 © Worldpics / shutterstock.com | S. 48 © Gunnar Pippel / shutterstock. com | S. 50 © Etablierter Grünstreifen am Unterhang zum Schutz vor Erosion und Abfluss, LUBW | S. 51 © LTZ Augustenberg | S. 52 © LSZ Boxberg, LUBW | S. 53 © Kompetenzzentrum Obstbau Bodensee | S. 54 © FVA Baden-Württemberg | S. 54 © Aichele & Jackmuth | S. 56 © dugdax / shut- terstock.com | S. 58 © Marcus Miranda / shutterstock.com | S. 60 und 61 © DLR Stand: Februar 2019 IMPRESSUM / BILDNACHWEIS[mehr]

                Dateityp: PDF-Dokument
                Dateigröße: 6,61 MB
                Verlinkt bei:
                  Zuletzt geändert: 06.05.2020
                  Klimaspartipp_des_Monats_Januar_2023.pdf

                  Klima-Spartipp des Monats Januar 2023: Probieren, geht manchmal doch über studieren! Zumindest gilt dies bei Heizungen, wo die Vorlauftemperatur des Heizwassers oftmals zu hoch eingestellt wird. So wird in der Praxis deutlich mehr Energie benötigt, als eigentlich nötig wäre. Wie hoch sollte die Vorlauftemperatur der Heizung sein? Eine richtig eingestellte Vorlauftemperatur ist weder zu hoch, noch zu niedrig. Pauschale Aussagen auf wie viel Grad die Vorlautemperatur einzustellen ist, sind allerdings nicht möglich, da es hier maßgebliche Einflussfaktoren wie Heizungsart, Dämmung des Gebäudes und vor allem die Außentemperatur mit zu berücksichtigen gilt. Allgemein sollte mit der Vorlauftemperatur des Heizungswassers solange herumexperimentiert werden, bis eine möglichst geringe Vorlauftemperatur erreicht wird, die aber trotzdem ausreicht, alle Zimmer ausreichend warm zu bekommen. Hier ist daher das Versuch- und Irrtumsverfahren anzuwenden. Dieses Quasi Katz- und Maus-Spiel auf der Suche nach der optimalen Vorlauftemperatur geht solange, bis der ideale Wert erreicht ist und es damit schlichtweg keinen Irrtum mehr gibt. Statt also lange zu studieren (und komplizierte Berechnungen anzustellen, wie hoch der Vorlauf sein müsste), ist der Vorlauf zu justieren. Als grobe Orientierungswerte für den Start des Versuch- und Irrtum-Verfahrens, um nicht vollkommen im Nebel herumstochern zu müssen, dienen folgende Werte für Vor- / Rücklauftemperaturen: Altbau mit Heizkörpern: 90°C / 70°C, teils auch mit 75°C / 65°C möglich Brennwertsystem: 60°C / 45°C Fußbodenheizung: 40°C / 30 °C Allgemein ist es so, dass wenn die Vorlauftemperaturen zu hoch angesetzt sind, dies zu übermäßig hohen Energieverbräuchen unter anderem aufgrund ansteigender Wärmeverluste über die Verteilleitungen führt. Im Falle zu gering eingestellter Temperaturen, wird das Haus oder zumindest einzelne Räume nicht richtig warm. Zudem kann der Energieverbrauch ebenfalls höher liegen, als eigentlich nötig. Denn zu niedrig eingestellte Vorlauftemperaturen führen meist zu einer höheren Spreizung, also einer größeren Temperaturdifferenz zwischen Vorlauf und Rücklauf des Heizungswassers, einem höheren Heizwassermassenstrom und einem überhöhten Energiebedarf der Heizungspumpe. Dass ein Heizkörper nicht richtig warm wird, liegt jedoch nicht zwangsläufig an einer zu geringen Einstellung der Vorlauftemperatur des Heizwassers. Auch bei Luft im Heizungs- system, kann ein ähnlicher Effekt auftreten, mit dem Unterschied, dass in einem solchen Fall die Heizkörper ungleichmäßig warm werden und oftmals Gluckergeräusche hörbar sind. Anleitungen, wie Sie die Vorlauftemperatur des Heizwassers richtig einstellen können, sind kostenlos im Internet verfügbar. Einfach unter dem Stichwort „Vorlauftemperatur einstellen“ in den gängigen Suchmaschinen suchen und schon erhalten Sie kürzere und auch ausführlichere Anleitungen, wie die Vorlauftemperatur verändert werden kann. Natürlich kann auch Fachpersonal mit der Optimierung des Vorlaufs beauftragt werden. Im Zuge dessen kann sich mitunter auch ein hydraulischer Abgleich der Heizung lohnen. https://www.heizung.de/ratgeber/heizkoerper/hilfe-mein-heizkoerper-wird-nicht-warm.html Abschließend noch ein wichtiger Hinweis: Dieser Tipp gilt ausschließlich für Heizwasser, wo das Wasser in einem geschlossenen Kreislauf zirkuliert, den es niemals verlässt. Bei Warmwasser sollte hingegen nicht mit der Vorlauftemperatur herumexperimentiert werden, denn sonst können sich hier mitunter Legionellen bilden. Florian S. Roth Gemeinden Baienfurt, Baindt und Berg Koordinator für eine klimaneutrale Kommunalverwaltung - gefördert durch das Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg Mobil: 0157 80661690 klima@b-gemeinden.de[mehr]

                  Dateityp: PDF-Dokument
                  Dateigröße: 384,69 KB
                  Verlinkt bei:
                    Zuletzt geändert: 23.01.2023
                    Klimaspartipp_des_Monats_Februar_2023.pdf

                    Klima-Spartipp des Monats Februar 2023: Kleinvieh macht auch Mist! Heute beginnt der Tipp einmal mit einer biologischen Erkenntnis, die ich aus eigener Erfahrung bestätigen kann, da ich in meiner Kindheit selber Kaninchen und Meerschweinchen als Haustiere hatte. Neben dieser „bahnbrechenden“ Erkenntnis, bezeichnet dieser Spruch natürlich auch ein Sprichwort und dieses führt zur Frage des Tages, nämlich ab wann es sich lohnt, Lichter auszuschalten? Konkret ist dies aber vom Lampentyp abhängig: Bei einer Glühlampe ist es so, dass diese beim Einschalten für einen sehr kurzen Zeitraum bis zu siebenmal mehr Strom als im Dauerbetrieb benötigt. Nach nur wenigen Minuten ist allerdings die erzielte Stromersparnis bereits größer als dieser negative Anschalteffekt. Energiesparlampen benötigen je nach Typ während des Einschaltens so viel Energie, wie sie anschließend in etwa drei Minuten Betrieb verbrauchen. Noch mehr Energie zum Einschalten benötigen Leuchtstoffröhren, die allerdings auch kaum noch verwendet werden. Bei LED-Lampen ist es hingegen so, dass der Mehrverbrauch beim Einschalten so gering ist, dass es sich bereits ab wenigen Sekunden lohnt, diese ein- und auszuschalten. Was die Lebensdauer angeht, ist das häufige Ein- und Ausschalten für LEDs kein Problem, denn diese sind mit bis zu 50.000 Schaltzyklen äußerst robust. Bei anderen Lampentypen sind diese Zahlen deutlich geringer. Aber in der Praxis fallen selbst Glühbirnen seltener wegen des Erreichens der maximal möglichen Schaltzyklen aus, als vielmehr aufgrund des Durchbrennens nach Erreichen der Lebensdauer von 1.000 Stunden, ab der laut Statistik nur noch circa 50 Prozent der Glühbirnen funktionstüchtig sind. Auch wenn es hier nur um kleine Wattbeträge geht, so läppert sich dies über alle Lichter und längere Zeiträume hinweg, doch zu einer ganz ordentlichen Stromeinsparung. In der Summe sind es häufig sowieso gerade die vielen kleinen Maßnahmen, die dazu beitragen, große Strommengen einzusparen. Denn viel Kleinvieh, macht auch viel Mist und oftmals sind es dann halt doch die kleinen Dinge im Leben, die entscheidend sind. Im Regelfall sollten daher immer, wenn der Raum für mindestens drei Minuten verlassen wird, alle Lichter ausgeschaltet werden. Bei LEDs lohnt sich dies sogar bereits ab deutlich unter einer Minute. Eine Ausnahme sind lediglich ältere Leuchtstoffröhren und sonstige Uraltlichter, die je nach Alter erst nach fünf bis zehn Minuten auszuschalten sind. Allerdings sind diese heute ja fast schon eine Art Blaue Mauritius, also äußerst selten. In Anlehnung an einen Reim aus der Vergangenheit des Klimaspartipps, gilt bei der Beleuchtung ab einem Verlassen des Raums für mindestens drei Minuten und bei LED schon ab nur wenigen Sekunden: Gehst du aus dem Raum hinaus, schalte stets die Lichter aus! Kommst du dann wieder in dem Raum hinein, schalt die Lichter wieder ein. (Anmerkung der Redaktion: aber natürlich nur, wenn es draußen dunkel ist, denn sonst wird ja sowieso kein Licht benötigt - frei nach dem Motto: Sonne an, Licht aus) Wer sich fragt, weshalb der heutige Tipp mit Zitaten aus vergangenen Klimaspartipps gespickt ist und etwas retromäßig daherkommt. Hier die Auflösung: Denn auch wenn der Klima- Spartipp noch lange nicht erwachsen ist, handelt es sich doch bereits um dessen zehnte Ausgabe. Es gilt also ein kleines Jubiläum zu feiern, daher auch so eine Art kleiner Rückblick. Florian S. Roth Gemeinden Baienfurt, Baindt und Berg Koordinator für eine klimaneutrale Kommunalverwaltung - gefördert durch das Ministerium für Umwelt, Klima und Energiewirtschaft BW Mobil: 0157 80661690 klima@b-gemeinden.de[mehr]

                    Dateityp: PDF-Dokument
                    Dateigröße: 79,25 KB
                    Verlinkt bei:
                      Zuletzt geändert: 07.02.2023

                      Infobereiche